A high-performance supercapacitor electrode NiCo 2 S 4 (NCS) nanosheet on SiO 2 @C core-shell nanospheres (SiO 2 @C-NCS nanocomposite) is prepared via simple an effective solution-based method. Benefiting from compositional and structural advantages, the as-prepared SiO 2 @C-NCS nanocomposite exhibits a high specific capacitance (625 F g −1 at 1 mA cm −2 ) and a stable cycling performance. An asymmetric supercapacitor (ASC) assembled with SiO 2 @C-NCS nanocomposite as a positive electrode and carbon nanotube paper as a negative electrode in aqueous KOH solution demonstrated a high energy density of 16 Wh kg −1 at an ultra-high specific power of 7200 W kg −1 . These promising results suggest the possible application of mixed transition metal sulfides-based composites as advanced electrode materials for highperformance ASCs.
The term disentangled refers to polymers with fewer entanglements in the amorphous regions, a metastable condition that can significantly affect the material’s properties and processing behavior. The lower entanglement density in ultra-high molecular weight polyethylene (dis-UHMWPE) facilitates the solid-state processability into uniaxially-oriented specimens reaching very high draw ratios and crystallinities. In this study, Au/dis-UHMWPE nanocomposites were formulated and processed at variable draw ratios. Polarized light microscopy suggests gold nanoparticles are oriented in arrays following the drawing of polymer chains. The structural features, upon orientation, are studied by means of Raman spectroscopy, wide- and small-angle X-ray scattering, and near-infrared spectrophotometry. Crystallinity is found to increase by 15%, as calculated by wide-angle X-ray scattering. The change in optical absorbance in the visible spectrum indicates that, with orientation, the average size of gold aggregates increases, supported quantitatively by small-angle X-ray scattering. Since the gold nanoparticles are expected to be found within amorphous chain segments, the aforementioned findings are attributed to the increase of crystallinity and thus the decrease of available (amorphous) space.
NiCo2S4/CNTs (NCS/CNTs) hybrid nanostructures have been synthesized by a facile one-step solvothermal method with varying content of CNTs. The structure and morphology of the synthesized NCS/CNTs hybrid revealed the formation of platelets anchored on the CNT matrix. When evaluated as electrode materials for supercapacitor, the as-synthesized NCS/CNT-1 hybrid (with 1% of CNT) manifested remarkable specific capacitance of 1690[Formula: see text]F[Formula: see text]g[Formula: see text] at the current density of 5[Formula: see text]A[Formula: see text]g[Formula: see text]. More importantly, an asymmetric supercapacitor (ASC) assembled based on NCS/CNT-1 as positive electrode and carbon nanotube paper (CNP) as a negative electrode delivered high energy density of 58[Formula: see text]Wh[Formula: see text]kg[Formula: see text] under power density of 8[Formula: see text]kW[Formula: see text]kg[Formula: see text]. Furthermore, the ASC device exhibited high cycling stability and 77.7% of initial specific capacitance retention after 7000 charge–discharge cycles at a current density of 8[Formula: see text]A[Formula: see text]g[Formula: see text]. The large enhancement in the electrochemical performance is attributed to the benefits of the nanostructured architecture, including good mechanical stability, high electrical conductivity as well as buffering for the volume changes during charge–discharge process. These convincing results show that NCS/CNTs hybrid nanostructures are promising electrode materials for high energy density supercapacitors (SCs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.