Collective migration of endothelial cells is important for wound healing and angiogenesis. During such migration, each constituent endothelial cell coordinates its magnitude and direction of migration with its neighbors while retaining intercellular adhesion. Ensuring coordination and cohesion involves a variety of intra- and inter-cellular signaling processes. However, the role of permeation of extracellular Na+ in collective cell migration remains unclear. Here, we examined the effect of Na+ permeation in collective migration of pulmonary artery endothelial cell (PAEC) monolayers triggered by either a scratch injury or a barrier removal over 24 hours. In the scratch assay, PAEC monolayers migrated in two approximately linear phases. In the first phase, wound closure started with fast speed which then rapidly reduced within 5 hours after scratching. In the second phase, wound closure maintained at slow and stable speed from 6 to 24 hours. In the absence of extracellular Na+, the wound closure distance was reduced by >50%. Fewer cells at the leading edge protruded prominent lamellipodia. Beside transient gaps, some sustained interendothelial gaps also formed and progressively increased in size over time, and some fused with adjacent gaps. In the absence of both Na+ and scratch injury, PAEC monolayer migrated even more slowly, and interendothelial gaps obviously increased in size towards the end. Pharmacological inhibition of the epithelial Na+ channel (ENaC) using amiloride reduced wound closure distance by 30%. Inhibition of both the ENaC and the Na+/Ca2+ exchanger (NCX) using benzamil further reduced wound closure distance in the second phase and caused accumulation of floating particles in the media. Surprisingly, pharmacological inhibition of the Ca2+ release-activated Ca2+ (CRAC) channel protein 1 (Orai1) using GSK-7975A, the transient receptor potential channel protein 1 and 4 (TRPC1/4) using Pico145, or both Orai1 and TRPC1/4 using combined GSK-7975A and Pico145 treatment did not affect wound closure distance dramatically. Nevertheless, the combined treatment appeared to cause accumulation of floating particles. Note that GSK-7975A also inhibits small inward Ca2+ currents via Orai2 and Orai3 channels, whereas Pico145 also blocks TRPC4, TRPC5, and TRPC1/5 channels. By contrast, gene silence of Orai1 by shRNAs led to a 25% reduction of wound closure in the first 6 hours but had no effect afterwards. However, in the absence of extracellular Na+ or cellular injury, Orai1 did not affect PAEC collective migration. Overall, the data reveal that Na+ permeation into cells contributes to PAEC monolayer collective migration by increasing lamellipodial formation, reducing accumulation of floating particles, and improving intercellular adhesion.
Quantitative assessment of cellular forces and motion advanced considerably over the last four decades. These advancements provided the framework to examine insightful mechanical signaling processes in cell culture systems. However, the field currently faces three problems: lack of quality standardization of the acquired data, technical errors in data analysis and visualization, and perhaps most importantly, the technology remains largely out of reach for common cell biology laboratories. To overcome these limitations, we developed a new experimental platform -Integrative Toolkit to Analyze Cellular Signals (iTACS). iTACS consists of two components: Acquisition and Training Module (AcTrM) and Analysis and Visualization Module (AnViM). AcTrM is based on µManager -an NIH-ImageJ-based microscope control software -and facilitates user self-training and automation of common image acquisition protocols. AnViM is based on NIH-ImageJ and facilitates user-friendly automation of data analysis and insightful visualization of results. These experiments involve culturing adherent cells on hydrogels, imaging fiducial markers embedded in the hydrogel, and finally extracting from these images a comprehensive mechanical characterization of the cells. Currently, iTACS enables the user to analyze and track a wide array of properties, including morphology, motion, cytoskeletal forces, and fluorescence of individual cells and their neighboring region. The quality standardization issue was addressed in AcTrM with, a reference image-guided refocusing technique. The technical issues in data analysis were addressed in AnViM with a multi-pronged image segmentation procedure, a user-friendly approach to identify boundary conditions, and a novel cellular property-based data visualization. AcTrM is designed to facilitate the
Endothelium from discrete vascular segments within the lung displays phenotypic and functional heterogeneity. However, isolation of segment specific endothelial cells (ECs) is a time and cost intensive process. Thus the aim of this current work was to develop an efficient method for obtaining ECs from rat pulmonary artery (PAECs), pulmonary vein (PVECs) and pulmonary microvasculature (PMVECs). Following surgical removal, vessels were digested using type II collagenase and trypsin. The enzymatically obtained cells were plated in D‐valine/heparin endothelial selective growth media on standard culture dishes. Non‐ECs resistant to the D‐valine media were removed by scraping. Lectin panning and differential cell binding were utilized to remove any remaining contaminating cells. Cell cultures were characterized using an EC marker panel: platelet endothelial cell adhesion molecule 1 (PECAM1), endothelial nitric oxide synthase (eNOS), von Willebrand factor (vWF), vascular endothelial cadherin (VE‐cadherin), and acetylated LDL uptake. Specific lectin binding was used to confirm the segmental origin of the ECs. PAECs bound Helix pomatia and Sambucus nigra, while PMVECs bound Griffonia simplicifolia. This combinatorial approach to isolating rat lung endothelial cells consistently yields multiple cell lines from individual animals. Supported by 5PO1HL066299.
Quantitative assessment of cellular forces and motion advanced considerably over the last four decades. These advancements provided the framework to examine insightful mechanical signaling processes in cell culture systems. However, the field currently faces three problems: lack of quality standardization of the acquired data, technical errors in data analysis and visualization, and perhaps most importantly, the technology remains largely out of reach for common cell biology laboratories. To overcome these limitations, we developed a new experimental platform -Integrative Toolkit to Analyze Cellular Signals (iTACS). iTACS consists of two components: Acquisition and Training Module (AcTrM) and Analysis and Visualization Module (AnViM). AcTrM is based on µManager -an NIH-ImageJ-based microscope control software -and facilitates user self-training and automation of common image acquisition protocols. AnViM is based on NIH-ImageJ and facilitates user-friendly automation of data analysis and insightful visualization of results. These experiments involve culturing adherent cells on hydrogels, imaging fiducial markers embedded in the hydrogel, and finally extracting from these images a comprehensive mechanical characterization of the cells. Currently, iTACS enables the user to analyze and track a wide array of properties, including morphology, motion, cytoskeletal forces, and fluorescence of individual cells and their neighboring region. The quality standardization issue was addressed in AcTrM with, a reference image-guided refocusing technique. The technical issues in data analysis were addressed in AnViM with a multi-pronged image segmentation procedure, a user-friendly approach to identify boundary conditions, and a novel cellular property-based data visualization. AcTrM is designed to facilitate the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.