Background
Histone acetylation is a ubiquitous and reversible post-translational modification in eukaryotes and prokaryotes that is co-regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HAT activity is important for the modification of chromatin structure in eukaryotic cells, affecting gene transcription and thereby playing a crucial regulatory role in plant development. Comprehensive analyses of HAT genes have been performed in Arabidopsis thaliana, Oryza sativa, barley, grapes, tomato, litchi and Zea mays, but comparable identification and analyses have not been conducted in wheat (Triticum aestivum).
Results
In this study, 31 TaHATs were identified and divided into six groups with conserved gene structures and motif compositions. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana, Oryza sativa and Triticum aestivum HAT genes. The TaHATs appeared to be regulated by cis-acting elements such as LTR and TC-rich repeats. The qRT–PCR analysis showed that the TaHATs were differentially expressed in multiple tissues. The TaHATs in expression also responded to temperature changes, and were all significantly upregulated after being infected by barley streak mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV) and wheat yellow mosaic virus (WYMV).
Conclusions
These results suggest that TaHATs may have specific roles in the response to viral infection and provide a basis for further study of TaHAT functions in T. aestivum plant immunity.
Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat.
Protein lysine acetylation (Kac) is an important post-translational modification mechanism in eukaryotes that is involved in cellular regulation. To investigate the role of Kac in virus-infected plants, we characterized the lysine acetylome of Nicotiana benthamiana plants with or without a Chinese wheat mosaic virus (CWMV) infection. We identified 4,803 acetylated lysine sites on 1,964 proteins. A comparison of the acetylation levels of the CWMV-infected group with those of the uninfected group revealed that 747 sites were upregulated on 422 proteins, including chloroplast localization proteins and histone H3, and 150 sites were downregulated on 102 proteins. Nineteen conserved motifs were extracted and 51 percent of the acetylated proteins located on chloroplast. Nineteen Kac sites were located on histone proteins, including 10 Kac sites on histone 3. Bioinformatics analysis results indicated that lysine acetylation occurs on a large number of proteins involved in biological processes, especially photosynthesis. Furthermore, we found that the acetylation level of chloroplast proteins, histone 3 and some metabolic pathway-related proteins were significantly higher in CWMV-infected plants than in uninfected plants. In summary, our results reveal the regulatory roles of Kac in response to CWMV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.