Radiometric normalization is a fundamental preprocessing step for the analysis of multitemporal and multisensor satellite images. Some of the previous radiometric normalization studies addressed the elimination of spectral differences between bitemporal or cross-sensor images by performing canonical correlation analysis (CCA) or its generalization called kernel CCA (KCCA). The KCCA-based normalization methods, which assume that the relation between at-sensor radiances is spatially nonlinear, can successfully extract pseudoinvariant features (PIFs) for bitemporal images with nonlinear differences caused by seasonal variation and for bitemporal images acquired by different sensors with different spectral centers and bandwidths of spectral bands. However, these methods did not consider the problems of high computation and storage costs induced by the huge size of kernel matrices and the overfitting problem caused by nonlinear regression, making the methods infeasible for satellite images of large sizes. To solve these problems, a hybrid CCA with hybrid regression model is proposed, which can preserve the characteristics of nonlinear CCA and regression while reducing time and space complexity and solving overfitting problems. Cross-sensor images acquired by Landsat-7 Enhanced Thematic Mapper Plus and Landsat-8 Operational Land Imager sensors were used to evaluate the proposed method. Experimental results demonstrate the superiority of the proposed method to the related CCA-based methods in terms of computational performance and PIF quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.