Abstract-This work studies resource allocation in a cloud market through the auction of Virtual Machine (VM) instances. It generalizes the existing literature by introducing combinatorial auctions of heterogeneous VMs, and models dynamic VM provisioning. Social welfare maximization under dynamic resource provisioning is proven NP-hard, and modeled with a linear integer program. An efficient α-approximation algorithm is designed, with α ∼ 2.72 in typical scenarios. We then employ this algorithm as a building block for designing a randomized combinatorial auction that is computationally efficient, truthful in expectation, and guarantees the same social welfare approximation factor α. A key technique in the design is to utilize a pair of tailored primal and dual LPs for exploiting the underlying packing structure of the social welfare maximization problem, to decompose its fractional solution into a convex combination of integral solutions. Empirical studies driven by Google Cluster traces verify the efficacy of the randomized auction.
Federation of geo-distributed cloud services is a trend in cloud computing which, by spanning multiple data centers at different geographical locations, can provide a cloud platform with much larger capacities. Such a geo-distributed cloud is ideal for supporting large-scale social media streaming applications (e.g., YouTube-like sites) with dynamic contents and demands, owing to its abundant on-demand storage/bandwidth capacities and geographical proximity to different groups of users. Although promising, its realization presents challenges on how to efficiently store and migrate contents among different cloud sites (i.e. data centers), and to distribute user requests to the appropriate sites for timely responses at modest costs. These challenges escalate when we consider the persistently increasing contents and volatile user behaviors in a social media application. By exploiting social influences among users, this paper proposes efficient proactive algorithms for dynamic, optimal scaling of a social media application in a geo-distributed cloud. Our key contribution is an online content migration and request distribution algorithm with the following features: (1) future demand prediction by novelly characterizing social influences among the users in a simple but effective epidemic model; (2) oneshot optimal content migration and request distribution based on efficient optimization algorithms to address the predicted demand, and (3) a ∆(t)-step look-ahead mechanism to adjust the one-shot optimization results towards the offline optimum. We verify the effectiveness of our algorithm using solid theoretical analysis, as well as large-scale experiments under dynamic realistic settings on a home-built cloud platform.
Abstract-Cloud computing, rapidly emerging as a new computation paradigm, provides agile and scalable resource access in a utility-like fashion, especially for the processing of big data. An important open issue here is to efficiently move the data, from different geographical locations over time, into a cloud for effective processing. The de facto approach of hard drive shipping is not flexible or secure. This work studies timely, cost-minimizing upload of massive, dynamically-generated, geo-dispersed data into the cloud, for processing using a MapReduce-like framework. Targeting at a cloud encompassing disparate data centers, we model a cost-minimizing data migration problem, and propose two online algorithms: an online lazy migration (OLM) algorithm and a randomized fixed horizon control (RFHC) algorithm , for optimizing at any given time the choice of the data center for data aggregation and processing, as well as the routes for transmitting data there. Careful comparisons among these online and offline algorithms in realistic settings are conducted through extensive experiments, which demonstrate close-to-offline-optimum performance of the online algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.