Purpose
The principle of the medial axis calculation is complicated and difficult to implement. Moreover, the accuracy is not high. Then, as the generated path has an endpoint at the boundary of the polygon, burrs may appear on the surface of the molded piece. This paper aims to improve the warpage deformation of SLM molded parts and the surface quality of molded parts, an improved mid-axis path generation algorithm is proposed.
Design/methodology/approach
First, the center point is calculated by the seed point growth method based on the distance transform, and the obtained medial axis has high precision and is suitable for simple polygons and complex polygons. Then, based on the extracted medial axis, a preliminary path is generated, the path is trimmed with MATLAB to remove the redundant path. Finally, a scan along the contour of the polygon is performed to improve the surface quality of the molded part.
Findings
The algorithm reduces the internal stress generated during the molding process by continuously changing the scanning direction of the path along the boundary curve of the scanning area, thereby reducing the amount of warpage of the molded part. The result of extraction has a higher precision and wider scope of application than other methods to extract central axis, such as the Voronoi diagram-based method. The path is trimmed to remove redundant paths and the polygon boundaries are scanned to further improve the surface quality of the molded part. The results show that warpage deformation of the proposed algorithm is significantly smaller than the other two methods, thus the forming precision is higher.
Originality/value
An improved medial axis path generation algorithm is proposed in this paper. The proposed method is applied to improve warpage deformation occurring in the SLM process. Seed point growth of distance transformation is used to extracted central axis. The result of extraction has a higher precision and wider scope of application than other methods to extract central axis, such as the Voronoi diagram-based method.
To schedule material supply intelligently and meet the production demand, studies concerning the material logistics planning problem are essential. In this paper, we consider the problem based on the scenario that more than one vehicle may visit each station in batches. The primary objective is to satisfy the demands in the time windows, followed by logistics planning with the minimum vehicles and travel time as the optimization objective. We construct a multi-objective mixed-integer programming model for the scenario of discrete material supply in workshops. First, we propose a hybrid heuristic algorithm combining NSGA-II and variable neighborhood search. This proposed algorithm combines the global search capability of NSGA-II and the strong local search capability, which can balance intensification and diversification well. Second, to maintain the diversity of population, we design the population diversity strategy and various neighborhood operators. We verify the effectiveness of the hybrid algorithm by comparing with other algorithms. To test the validity of the proposed problem, we have carried out research and application in a construction machinery enterprise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.