SUMMARY
Herpes simplex virus-1 (HSV-1) establishes infections in humans and mice but some non-human primates exhibit resistance via unknown mechanisms. Innate immune recognition pathways are highly conserved but are pivotal in determining susceptibility to DNA virus infections. We report that variation of a single amino acid residue in the innate immune sensor cGAS determines species-specific inactivation by HSV-1. The HSV-1 UL37 tegument protein deamidates human and mouse cGAS. Deamidation impairs the ability of cGAS to catalyze cGAMP synthesis, which activates innate immunity. HSV-1 with deamidase-deficient UL37 promotes robust antiviral responses and is attenuated in mice, in a cGAS- and STING-dependent manner. Mutational analyses identified a single asparagine in human and mouse cGAS that is not conserved in many non-human primates. This residue underpins UL37-mediated cGAS deamidation and species permissiveness of HSV-1. Thus, HSV-1 mediates cGAS deamidation for immune evasion and exploits species sequence variation to disarm host defenses.
Different subtypes of non-small cell lung cancer (NSCLC) have distinct sites of origin, histologies, genetic and epigenetic changes. In this study, we explored the mechanisms of ECT2 dysregulation and compared its prognostic value in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). In addition, we also investigated the enrichment of ECT2 co-expressed genes in KEGG pathways in LUAD and LUSC. Bioinformatic analysis was performed based on data from the Cancer Genome Atlas (TCGA)-LUAD and TCGA-LUSC. Results showed that ECT2 expression was significantly upregulated in both LUAD and LUSC compared with normal lung tissues. ECT2 expression was considerably higher in LUSC than in LUAD. The level of ECT2 DNA methylation was significantly lower in LUSC than in LUAD. ECT2 mutation was observed in 5% of LUAD and in 51% of LUSC cases. Amplification was the predominant alteration. LUAD patients with ECT2 amplification had significantly worse disease-free survival (p = 0.022). High ECT2 expression was associated with unfavorable overall survival (OS) (p<0.0001) and recurrence-free survival (RFS) (p = 0.001) in LUAD patients. Nevertheless, these associations were not observed in patients with LUSC. The following univariate and multivariate analysis showed that the high ECT2 expression was an independent prognostic factor for poor OS (HR: 2.039, 95%CI: 1.457–2.852, p<0.001) and RFS (HR: 1.715, 95%CI: 1.210–2.432, p = 0.002) in LUAD patients, but not in LUSC patients. Among 518 genes co-expressed with ECT2 in LUAD and 386 genes co-expressed with ECT2 in LUSC, there were only 98 genes in the overlapping cluster. Some of the genes related KEGG pathways in LUAD were not observed in LUSC. These differences might help to explain the different prognostic value of ECT2 in LUAD and LUSC, which are also worthy of further studies.
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well‐known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short‐chain and long‐chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.