Tipping points-where systems shift radically and potentially irreversibly into a different state-have received considerable attention in ecology. Although there is convincing evidence that human drivers can cause regime shifts at local and regional scales, the increasingly invoked concept of planetary scale tipping points in the terrestrial biosphere remains unconfirmed. By evaluating potential mechanisms and drivers, we conclude that spatial heterogeneity in drivers and responses, and lack of strong continental interconnectivity, probably induce relatively "smooth" changes at the global scale, without an expectation of marked tipping patterns. This implies that identifying critical points along global continua of drivers might be unfeasible, and that characterizing global biotic change with single aggregates is inapt.
The global overshoot indicated by Ecological Footprint calculations consists entirely of an unreliable reframing of human carbon emissions and none of the five other land-use categories—cropland, grazing land, built-up land, fishing grounds, and forests. The Ecological Footprint is therefore “so misleading as to preclude its use in any serious science or policy context,” argue Blomqvist et al. in this perspective.
The global energy system has a relatively small land footprint at present, comprising just 0.4% of ice-free land. This pales in comparison to agricultural land use– 30–38% of ice-free land–yet future low-carbon energy systems that shift to more extensive technologies could dramatically alter landscapes around the globe. The challenge is more acute given the projected doubling of global energy consumption by 2050 and widespread electrification of transportation and industry. Yet unlike greenhouse gas emissions, land use intensity of energy has been rarely studied in a rigorous way. Here we calculate land-use intensity of energy (LUIE) for real-world sites across all major sources of electricity, integrating data from published literature, databases, and original data collection. We find a range of LUIE that span four orders of magnitude, from nuclear with 7.1 ha/TWh/y to dedicated biomass at 58,000 ha/TWh/y. By applying these LUIE results to the future electricity portfolios of ten energy scenarios, we conclude that land use could become a significant constraint on deep decarbonization of the power system, yet low-carbon, land-efficient options are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.