We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence problem very difficult so there will often be a significant number of outliers to handle. To tackle this problem, we use recent theoretical as well as technical advances. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite cases with more than 99 percent outlier correspondences in city-scale models with several millions of 3D points.
We consider the problem of localizing a novel image in a large 3D model. In principle, this is just an instance of camera pose estimation, but the scale introduces some challenging problems. For one, it makes the correspondence problem very difficult and it is likely that there will be a significant rate of outliers to handle. In this paper we use recent theoretical as well as technical advances to tackle these problems. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite more than 99% of outlier correspondences. 1
BackgroundSodium fluoride (NaF) positron emission tomography combined with computer tomography (PET/CT) has shown to be more sensitive than the whole-body bone scan in the detection of skeletal uptake due to metastases in prostate cancer. We aimed to calculate a 3D index for NaF PET/CT and investigate its correlation to the bone scan index (BSI) and overall survival (OS) in a group of patients with prostate cancer.MethodsNaF PET/CT and bone scans were studied in 48 patients with prostate cancer. Automated segmentation of the thoracic and lumbar spines, sacrum, pelvis, ribs, scapulae, clavicles, and sternum were made in the CT images. Hotspots in the PET images were selected using both a manual and an automated method. The volume of each hotspot localized in the skeleton in the corresponding CT image was calculated. Two PET/CT indices, based on manual (manual PET index) and automatic segmenting using a threshold of SUV 15 (automated PET15 index), were calculated by dividing the sum of all hotspot volumes with the volume of all segmented bones. BSI values were obtained using a software for automated calculations.ResultsBSI, manual PET index, and automated PET15 index were all significantly associated with OS and concordance indices were 0.68, 0.69, and 0.70, respectively. The median BSI was 0.39 and patients with a BSI >0.39 had a significantly shorter median survival time than patients with a BSI <0.39 (2.3 years vs not reached after 5 years of follow-up [p = 0.01]). The median manual PET index was 0.53 and patients with a manual PET index >0.53 had a significantly shorter median survival time than patients with a manual PET index <0.53 (2.5 years vs not reached after 5 years of follow-up [p < 0.001]). The median automated PET15 index was 0.11 and patients with an automated PET15 index >0.11 had a significantly shorter median survival time than patients with an automated PET15 index <0.11 (2.3 years vs not reached after 5 years of follow-up [p < 0.001]).ConclusionsPET/CT indices based on NaF PET/CT are correlated to BSI and significantly associated with overall survival in patients with prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.