We consider the problem of localizing a novel image in a large 3D model, given that the gravitational vector is known. In principle, this is just an instance of camera pose estimation, but the scale of the problem introduces some interesting challenges. Most importantly, it makes the correspondence problem very difficult so there will often be a significant number of outliers to handle. To tackle this problem, we use recent theoretical as well as technical advances. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite cases with more than 99 percent outlier correspondences in city-scale models with several millions of 3D points.
Abstract. We present a non-incremental approach to structure from motion. Our solution is based on robustly computing global rotations from relative geometries and feeding these into the known-rotation framework to create an initial solution for bundle adjustment. To increase robustness we present a new method for constructing reliable point tracks from pairwise matches. We show that our method can be seen as maximizing the reliability of a point track if the quality of the weakest link in the track is used to evaluate reliability. To estimate the final geometry we alternate between bundle adjustment and a robust version of the known-rotation formulation. The ability to compute both structure and camera translations independent of initialization makes our algorithm insensitive to degenerate epipolar geometries. We demonstrate the performance of our system on a number of image collections. 1
Prior work on multi-view structure from motion is dominated by sequential approaches starting from a single twoview reconstruction, then adding new images one by one. In contrast, we propose a non-sequential methodology based on rotational consistency and robust estimation using convex optimization. The resulting system is more robust with respect to (i) unreliable two-view estimations caused by short baselines, (ii) repetitive scenes with locally consistent structures that are not consistent with the global geometry and (iii) loop closing as errors are not propagated in a sequential manner. Both theoretical justifications and experimental comparisons are given to support these claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.