The stability and wide temperature performance range of solid electrolytes are the keys to the development of high-energy density all-solid-state lithium-ion batteries. In this work, a PVDF-HFP-LiClO4-Li6.4La3Zr1.4Ta0.6O12 (LLZTO) composite solid electrolyte was prepared using the solution pouring method. The PVDF-HFP-LiClO4-LLZTO composite solid electrolyte shows excellent electrochemical performance in the temperature range of 30 to 60 °C. By assembling this electrolyte into the battery, the LiFePO4/PVDF-HFP-LiClO4-LLZTO/Li battery shows outstanding electrochemical performance in the temperature range of 30 to 60 °C. The ionic conductivity of the composite electrolyte membrane at 30 °C and 60 °C is 5.5 × 10−5 S cm−1 and 1.0 × 10−5 S cm−1, respectively. At a current density of 0.2 C, the LiFePO4/PVDF-HFP-LiClO4-LLZTO/Li battery shows a high initial specific discharge capacity of 133.3 and 167.2 mAh g−1 at 30 °C and 60 °C, respectively. After 50 cycles, the reversible electrochemical capacity of the battery is 121.5 and 154.6 mAh g−1 at 30 °C and 60 °C; the corresponding capacity retention rates are 91.2% and 92.5%, respectively. Therefore, this work provides an effective strategy for the design and preparation of solid-state lithium-ion batteries.
Solid-state lithium sulfur batteries are becoming a breakthrough technology for energy storage systems due to their low cost of sulfur, high energy density and high level of safety. However, its commercial application has been limited by the poor ionic conductivity and sulfur shuttle effect. In this paper, a nitrogen-doped porous carbon fiber (NPCNF) active material was prepared by template method as a sulfur-host of the positive sulfur electrode. The morphology was nano fiber-like and enabled high sulfur content (62.9 wt%). A solid electrolyte membrane (PVDF/LiClO4/LATP) containing polyvinylidene fluoride (PVDF) and lithium aluminum titanium phosphate (Li1.3Al0.3Ti1.7(PO4)3) was prepared by pouring and the thermosetting method. The ionic conductivity of PVDF/LiClO4/LATP was 8.07 × 10−5 S cm−1 at 25 °C. The assembled battery showed good electrochemical performance. At 25 °C and 0.5 C, the first discharge specific capacity was 620.52 mAh g−1. After 500 cycles, the capacity decay rate of each cycle was only 0.139%. The synergistic effect between the composite solid electrolyte and the nitrogen-doped porous carbon fiber composite sulfur anode studied in this paper may reveal new approaches for improving the cycling performance of a solid-state lithium-sulfur battery.
Solid-state lithium batteries have attracted much attention due to their special properties of high safety and high energy density. Among them, the polymer electrolyte membrane with high ionic conductivity and a wide electrochemical window is a key part to achieve stable cycling of solid-state batteries. However, the low ionic conductivity and the high interfacial resistance limit its practical application. This work deals with the preparation of a composite solid electrolyte with high mechanical flexibility and non-flammability. Firstly, the crystallinity of the polymer is reduced, and the fluidity of Li+ between the polymer segments is improved by tertiary polymer polymerization. Then, lithium salt is added to form a solpolymer solution to provide Li+ and anion and then an inorganic solid electrolyte is added. As a result, the composite solid electrolyte has a Li+ conductivity (3.18 × 10−4 mS cm−1). The (LiNi0.5Mn1.5O4)LNMO/SPLL (PES-PVC-PVDF-LiBF4-LAZTP)/Li battery has a capacity retention rate of 98.4% after 100 cycles, which is much higher than that without inorganic oxides. This research provides an important reference for developing all-solid-state batteries in the greenhouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.