Background: Natural cyclopeptide RA-XII, isolated from Rubia yunnanensis, is a promising chemotherapeutic agent for colon cancer. The photosensitizer protoporphyrin-IX attached with triphenylphosphonium (TPP) could possess mitochondria targeting capacity and exert photodynamic therapy (PDT) by inducing oxidizing damage to the mitochondria and cell apoptosis eventually. In this work, pH-sensitive liposomes were constructed to simultaneously deliver RA-XII as a chemotherapeutic drug and modified porphyrin as a mitochondria-targeting photosensitizer to treat colon cancer, and verified its mechanism of action and antitumor therapeutic efficacy. Methods: The colon cancer targeting liposome nanoparticle RA/TPPP-Lip was synthesized using thin film hydration. The therapeutic effect and targeting ability of RA/TPPP-Lip was investigated in vitro. And use HCT116 cell allogeneic subcutaneous transplantation tumor model to investigate the anti-tumor and targeting effects of RA/TPPP-Lip in vivo. Results: RA/TPPP-Lip gained the targeting ability through surface-modified HA to increase the accumulation of RA-XII and TPPP in colon cancer cells. A series of in vitro experimental results showed that TPPP produced cytotoxic ROS under laser irradiation to directly damage cell mitochondria and played a combined role with RA-XII, making RA/TPPP-Lip the best colon cancer cell growth inhibitory effect. Furthermore, in vivo antitumor experiments showed that the RA/TPPP-Lip substantially accumulated at the tumor site and efficiently repressed tumor growth in nude mice.
Conclusion:We have successfully designed a new cancer-targeted nanomedicine platform (RA/TPPP-Lip) for the collaborative treatment of colon cancer, which can achieve the targeted continuous release of multiple therapeutic drugs. This work provides a new strategy for precise combination therapy, which may promote the further development of collaborative cancer treatment platforms.
Introduction
The repetitive transcranial magnetic stimulation (rTMS) has clinically wide application prospect of psychiatry and neuroscience, for its painless, noninvasive, and high efficiency. So far, rTMS has been used in the treatment of Alzheimer's disease (AD) but the underlying mechanism is not clear.
Methods and Results
The APP/PS1 mice at 3‐month‐old were treated by 5 Hz high‐frequency (HF) rTMS for two weeks. After rTMS treatment, the AD‐like cognitive impairments of APP/PS1 mice were investigated subsequently, and molecular mechanisms underlying was further explored. The study showed that the 2‐week rTMS at 5Hz frequency improved cognitive impairments and AD‐like pathology (including a decrease in p‐Tau, APP, Aβ, and PP2A expression) of APP/PS1 mice. Although BDNF‐TrkB signaling was significantly enhanced, no differences of SYN, PSD95 and p‐AKT were observed in the brain of APP/PS1 mice. On the contrary, the LC3Ⅱ/LC3Ⅰ ratio was elevated with a significant reduction of ApoE and p62 in mice.
Conclusions
rTMS exerts a potentially protective role in the prevention and treatment of AD by reducing ApoE expression and promoting autophagic flux, which provides a new insight into the mechanism of rTMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.