The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism.
There is always a constant need to develop alternative or synergistic anticancer drugs with minimal side effects. One important strategy to develop effective anticancer agents is to investigate potent derived compounds from natural sources. The present study was designed to determine antiproliferative activity of Kaempferol using in silico as well as in vitro study. Docking was performed using human GCN5 (hGCN5) protein involved with cell cycle, apoptosis, and glucose metabolism. Cell viability and cytotoxicity on Daudi cells were evaluated by trypan blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in a dose and time dependent manner, respectively. The compound inhibited the proliferation and growth of the Daudi cells, through induced cell death. The pure compound proved lead inhibitors of cell proliferation, thus manifesting significant antiproliferative activity. The docking results revealed that Kaempferol exhibited binding interaction to hGCN5 protein. Further, molecular dynamics using the dock pose of hGCN5-Kaempferol complex were performed to understand the basic structural unit which lead to inefficiency in binding and, therefore, pronounced instability and its possible consequences of reduced binding affinity. The data obtained in this study indicates that Kaempferol is a promising compound leading to inhibition of Daudi cell growth and proliferation.
An empirical relationship between the experimental inhibitory activities of triclosan derivatives and its computationally predicted Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase (PfENR) dock poses was developed to model activities of known antimalarials. A statistical model was developed using 57 triclosan derivatives with significant measures (r = 0.849, q(2) = 0.619, s = 0.481) and applied on structurally related and structurally diverse external datasets. A substructure-based search on ChEMBL malaria dataset (280 compounds) yielded only two molecules with significant docking energy, whereas eight active antimalarials (EC(50) < 100 nM, tested on 3D7 strain) with better predicted activities (pIC(50) ~ 7) from Open Access Malaria Box (400 compounds) were prioritized. Further, calculations on the structurally diverse rhodanine molecules (known PfENR inhibitors) distinguished actives (experimental IC(50) = 0.035 μM; predicted pIC(50) = 6.568) and inactives (experimental IC(50) = 50 μM; predicted pIC50 = -4.078), which showed that antimalarials possessing dock poses similar to experimental interaction profiles can be used as leads to test experimentally on enzyme assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.