Hot tearing is one of the most severe and irreversible casting defects for many metallic materials. In 2004, Eskin et al. published a review paper in which the development of hot tearing of aluminium alloys was evaluated . Sixteen years have passed and this domain has undergone considerable development. Nevertheless, an updated systematic description of this field has not been presented. Therefore, this article presents the latest research status of the hot tearing during the casting of aluminium alloys. The first part explains the hot tearing phenomenon and its occurrence mechanism. The second part presents a detailed description and analysis of the characterisation methods of the mushy zone mechanical properties and hot tearing susceptibility. The third part presents considerable data pertaining to the mushy zone behaviour, including those of the linear contraction and load behaviour during solidification, semi-solid strength and ductility, and characteristic points related to hot tearing. The fourth part examines the effect of the composition and casting process parameters on the hot tearing susceptibility of aluminium alloys. The fifth part describes the hot tearing simulations and the associated criteria and mechanisms. Finally, recommendations for the further development of hot tearing research are presented.
Application prospects in automotive and aerospace industry have led to extensive studies on AA6xxx alloys in recent years. Varying amounts of Mg, Si and Cu and heat treatments are used to achieve the desired mechanical properties in these alloys. In this investigation, a series of tests have been designed and carried out on model AlMgSi(Cu) alloys to investigate the effects of Cu, Mg and Si composition and heat treatments on the corrosion properties for a range of Cu content levels (0.03, 0.15 and 0.80 wt%, respectively).The results indicate that the localized corrosion susceptibility of the model alloys primarily increased with Cu content. The Si and Mg content and ratio do not appear to have a significant effect on the local corrosion behaviour. Heat treatment can improve the corrosion resistance. However, this effect is small compared to that of the Cu content for the range of model alloys investigated. Intergranular corrosion will occur by micro-galvanic coupling between the cathodic AlMgSi(Cu) (Q) phase precipitates and the aluminum matrix adjacent to the particles. The increasing susceptibility to intergranular corrosion with Cu content can be attributed to an increased formation of Q phase particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.