In recent years, China is increasingly dependent on imported wood. Afrormosia and Newtonia are some of the imported species with good utilization potential. However, both of them also have problems with poor dimensional stability. In order to make better use of these two types of wood, the influence of heat treatment under air and palm oil conditions on the color, dimensional stability, and hygroscopicity of Afrormosia and Newtonia was investigated. The Afrormosia and Newtonia wood samples were heated in air or palm oil medium for two hours at 160 °C, 180 °C and 200 °C, respectively. Then, the color, weight changes, swelling, moisture absorption and chemical structure were evaluated for each case. As results, the heat treatments with air or palm oil increased the dark color of Newtonia and Afrormosia wood and this increase was proportional to the treatment temperature. The tangential and radial swelling coefficient for air heat treatment of Afrormosia wood at 200 °C were, respectively, reduced by 24.59% and 19.58%, while this reduction for Newtonia was 21.32% and 14.80%. The heat treatment in palm oil further improved the stability and hygroscopicity of the wood, showing that the Afrormosia samples treated by palm oil at 200 °C underwent a decrease of its tangential and radial swelling coefficient, respectively, by 49.34% and 45.88%, whereas the tangential and radial swelling coefficient of Newtonia treated under the same conditions were reduced by 42.85% and 33.63%, respectively. The heat treatments of Afrormosia and Newtonia samples under air at 200 °C diminished the water absorption by 21.67% and 22.12%. The water absorption of Afrormosia and Newtonia heat-treated under palm oil at 200 °C was reduced, respectively, by 39.40% and 37.49%. Moreover, the FTIR analysis showed the decrease of hydroxyl groups in proportion to the wood treatment temperature.
The objective of this work was to study the influence of palm oil on the VOCs emitted during the heat treatment of Afromosia (Pericopsis Elata Van Meeuwen) and Newtonia (Newtonia paucijuga Harms) wood by comparing to the VOCs emitted during the heat treatment under air. Two batches of Afrormosia and Newtonia wood samples were heated under air and palm oil at temperatures of 160 °C, 180 °C, and 200 °C for 2 h. Then, the VOCs were collected by Solid Phase Micro Extraction (SPME) and measured using a Gas Chromatograph and Mass Spectrometer (GC-MS). The results showed that the temperature, the wood species, and the treatment medium have a great influence on the categories and percentages of VOCs emitted. In the air heat treatment, ethers were the most emitted VOCs from Afrormosia and Newtonia when these woods were thermally treated at 160 °C. Newtonia treated under air at 180 °C emitted more esters, while Afrormosia continued to emit more ethers under the same conditions. Moreover, Afrormosia and Newtonia treated at 200 °C emitted more ketones and aldehydes, respectively. Regarding the heat treatment of Afrormosia and Newtonia wood under palm oil, a similarity of the VOCs emitted from Newtonia with those emitted from Afrormosia under the same conditions was observed. Furthermore, palm oil was the main factor conditioning the nature of the VOCs emitted during the heat treatment. In general, for the treatment of Afrormoshia wood with palm oil, the VOCs emitted, such as alcohols, alkanes, and ethers, decreased with the treatment temperature. Ethers and ketones increased with the processing temperature. At 160 °C and 180 °C, the percentage of aldehydes was highest, while, at 200 °C, the percentage of esters was highest. Similarly, for Newtonia treated under palm oil, adehydes, ethers, and alcohols were the most abundant VOCs emitted at 160 °C. However, their percentages decreased with the increase in the treatment temperature; on the contrary, esters and ketones were weakly emitted at 160 °C and became abundant with the increase in temperature. Additionally, the ethers formed during the heat treatment of Afrormosia and Newtonia wood treated under air carry acetyl groups, while those formed during the treatment of the said wood under palm oil carry hydroxyl groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.