Highlights d Unlike promoter-mediated PD-L1 induction by IFN-g, EGFR rapidly stabilizes PD-L1 mRNA d Once induced, PD-L1 enhances metastasis in vivo and chemotaxis toward EGF d PD-L1 physically binds with and enhances activation of phospholipase C-g1 by EGFR d PLC-g1 binds a PD-L1's cytoplasmic segment implicated in protection from cytotoxicity
Faithful translation of genetic information depends on the ability of the translational machinery to decode stop codons as termination signals. Although termination of protein synthesis is highly efficient, errors in decoding of stop codons may lead to the synthesis of C-terminally extended proteins. It was found that in eukaryotes such elongated proteins do not accumulate in cells. However, the mechanism for sequestration of C-terminally extended proteins is still unknown. Here we show that 3′-UTR-encoded polypeptides promote aggregation of the C-terminally extended proteins, and targeting to lysosomes. We demonstrate that 3′-UTR-encoded polypeptides can promote different levels of protein aggregation, similar to random sequences. We also show that aggregation of endogenous proteins can be induced by aminoglycoside antibiotics that promote stop codon read-through, by UAG suppressor tRNA, or by knokcdown of release factor 1. Furthermore, we find correlation between the fidelity of termination signals, and the predicted propensity of downstream 3′-UTR-encoded polypeptides to form intrinsically disordered regions. Our data highlight a new quality control mechanism for elimination of C-terminally elongated proteins.
In-frame stop codons mark the termination of translation. However, post-termination ribosomes can reinitiate translation at downstream AUG codons. In mammals, reinitiation is most efficient when the termination codon is positioned close to the 5′-proximal initiation site and around 78 bases upstream of the reinitiation site. The phenomenon was studied mainly in the context of open reading frames (ORFs) found within the 5′-untranslated region, or polycicstronic viral mRNA. We hypothesized that reinitiation of translation following nonsense mutations within the main ORF of p53 can promote the expression of N-truncated p53 isoforms such as Δ40, Δ133 and Δ160p53. Here, we report that expression of all known N-truncated p53 isoforms by reinitiation is mechanistically feasible, including expression of the previously unidentified variant Δ66p53. Moreover, we found that significant reinitiation of translation can be promoted by nonsense mutations located even 126 codons downstream of the 5′-proximal initiation site, and observed when the reinitiation site is positioned between 6 and 243 bases downstream of the nonsense mutation. We also demonstrate that reinitiation can stabilise p53 mRNA transcripts with a premature termination codon, by allowing such transcripts to evade the nonsense mediated decay pathway. Our data suggest that the expression of N-truncated proteins from alleles carrying a premature termination codon is more prevalent than previously thought.
Unlike early transcriptional responses to mitogens, later events are less well-characterized. Here, we identified delayed down-regulated genes (DDGs) in mammary cells after prolonged treatment with epidermal growth factor (EGF). The expression of these DDGs was low in mammary tumors and correlated with prognosis. The proteins encoded by several DDGs directly bind to and inactivate oncoproteins and might therefore act as tumor suppressors. The transcription factor teashirt zinc finger homeobox 2 (TSHZ2) is encoded by a DDG, and we found that overexpression of TSHZ2 inhibited tumor growth and metastasis and accelerated mammary gland development in mice. Although the gene TSHZ2 localizes to a locus (20q13.2) that is frequently amplified in breast cancer, we found that hypermethylation of its promoter correlated with down-regulation of TSHZ2 expression in patients. Yeast two-hybrid screens and protein-fragment complementation assays in mammalian cells indicated that TSHZ2 nucleated a multiprotein complex containing PRC1/Ase1, cyclin B1, and additional proteins that regulate cytokinesis. TSHZ2 increased the inhibitory phosphorylation of PRC1, a key driver of mitosis, mediated by cyclin-dependent kinases. Furthermore, similar to the tumor suppressive transcription factor p53, TSHZ2 inhibited transcription from the PRC1 promoter. By recognizing DDGs as a distinct group in the transcriptional response to EGF, our findings uncover a group of tumor suppressors and reveal a role for TSHZ2 in cell cycle regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.