In-frame stop codons mark the termination of translation. However, post-termination ribosomes can reinitiate translation at downstream AUG codons. In mammals, reinitiation is most efficient when the termination codon is positioned close to the 5′-proximal initiation site and around 78 bases upstream of the reinitiation site. The phenomenon was studied mainly in the context of open reading frames (ORFs) found within the 5′-untranslated region, or polycicstronic viral mRNA. We hypothesized that reinitiation of translation following nonsense mutations within the main ORF of p53 can promote the expression of N-truncated p53 isoforms such as Δ40, Δ133 and Δ160p53. Here, we report that expression of all known N-truncated p53 isoforms by reinitiation is mechanistically feasible, including expression of the previously unidentified variant Δ66p53. Moreover, we found that significant reinitiation of translation can be promoted by nonsense mutations located even 126 codons downstream of the 5′-proximal initiation site, and observed when the reinitiation site is positioned between 6 and 243 bases downstream of the nonsense mutation. We also demonstrate that reinitiation can stabilise p53 mRNA transcripts with a premature termination codon, by allowing such transcripts to evade the nonsense mediated decay pathway. Our data suggest that the expression of N-truncated proteins from alleles carrying a premature termination codon is more prevalent than previously thought.
Lysine deacetylases (KDACs) are enzymes that catalyze the hydrolysis of acyl groups from acyl-lysine residues. The recent identification of thousands of putative acylation sites, including specific acetylation sites, created an urgent need for biochemical methodologies aimed at better characterizing KDAC-substrate specificity and evaluating KDACs activity. To address this need, we utilized genetic code expansion technology to coexpress site-specifically acylated substrates with mammalian KDACs, and study substrate recognition and deacylase activity in live Escherichia coli. In this system the bacterial cell serves as a “biological test tube” in which the incubation of a single mammalian KDAC and a potential peptide or full-length acylated substrate transpires. We report novel deacetylation activities of Zn2+-dependent deacetylases and sirtuins in bacteria. We also measure the deacylation of propionyl-, butyryl-, and crotonyl-lysine, as well as novel deacetylation of Lys310-acetylated RelA by SIRT3, SIRT5, SIRT6, and HDAC8. This study highlights the importance of native interactions to KDAC-substrate recognition and deacylase activity.
The 26S proteasome consists of loosely associated 20S catalytic and 19S regulatory complexes. Although approximately half of the proteasomes in eukaryotic cells exist as free 20S complexes, our mechanistic and physiological understanding of 26S dissociation remains incomplete. Here, we show that glucose starvation in mammalian cells results in the uncoupling of 26S holoenzymes into intact 20S and 19S complexes. Subcomplex affinity-purification and quantitative mass spectrometry revealed that Ecm29 proteasome adaptor and scaffold (ECPAS) is a crucial mediator of this structural remodeling. The loss of ECPAS abrogated 26S dissociation, leading to decreased degradation of 20S proteasome substrates, such as puromycylated polypeptides and lysine-less cyclin B. In silico modeling analysis suggested that the conformational changes of ECPAS may commence the disassembly process. ECPAS was also essential for proper endoplasmic reticulum stress response and cell survival during glucose starvation. In addition, we evaluated the role of ECPAS in vivo using the mouse xenograft model and observed that glucose-deprived tumor tissues had significantly elevated 20S proteasome levels. Collectively, our results indicate that the 20S-19S disassembly mediated by ECPAS is a novel mechanism adapting global proteolysis to physiological needs and an effective cellular strategy against proteotoxic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.