Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.
Phosphorylation of protein tyrosine residues regulates important cell functions and is, when dysregulated, often crucially involved in oncogenesis. It is therefore important to develop and evaluate methods for identifying and studying tyrosine phosphorylated (P-Tyr) proteins. P-Tyr proteins are present at very low concentrations within cells, requiring highly selective enrichment methods to be detected. In this study, we applied immunoaffinity as enrichment step for P-Tyr proteins. Five selected anti-phosphotyrosine antibodies (monoclonal antibodies 4G10, PY100, PYKD1, 13F9 and one polyclonal antiserum) were evaluated with respect to their capability to enrich P-Tyr proteins from cell extracts of the K562 leukemia cell line. The enrichment resulted in the detection of a group of proteins that potentially were tyrosine-phosphorylated (putative P-Tyr proteins). High accuracy identification of actual P-Tyr sites were performed using a highly selective and sensitive liquid chromatography Fourier transform mass spectrometer (LC-FTMS) setup with complementary collision activated dissociation (CAD) and electron capture dissociation (ECD) fragmentations. 4G10 and PY100 antibodies recognized the greatest number of putative P-Tyr proteins in initial screening experiments and were therefore further evaluated and compared in immunoaffinity enrichment of both P-Tyr proteins and peptides. Using the 4G10 antibody for enrichment of proteins, we identified 459 putative P-Tyr proteins by MS. Out of these proteins, 12 were directly verified as P-Tyr proteins by MS analysis of the actual site. Using the PY100 antibody for enrichment of peptides, we detected 67 P-Tyr peptides (sites) and 89 putative P-Tyr proteins. Generally, enrichment at the peptide level made it difficult to reliably determine the identity of the proteins. In contrast, protein identification following immunoaffinity enrichment at the protein level gave greater sequence coverage and thus a higher confidence in the protein identification. By combining all available information, 40 proteins were identified as true P-Tyr proteins from the K562 cell line. In conclusion, this study showed that a combination of immunoaffinity enrichment using multiple antibodies of both intact and digested proteins in parallel experiments is required for best possible coverage of all possible P-Tyr proteins in a sample.
We have combined 2-D SDS-PAGE with liquid chromatography-high resolving mass spectrometry (LC-MS) to explore the proteome of the adenovirus type 2 (Ad2) at the level of post translational modifications (PTMs). The experimental design included in-solution digestion, followed by titanium dioxide enrichment, as well as in-gel digestion of polypeptides after separation of Ad2 capsid proteins by 1-D and 2-D SDS-PAGE. All samples were analyzed using LC-MS with subsequent manual verification of PTM positions. The results revealed new phosphorylation sites that can explain the observed trains of protein spots observed for the pIII, pIIIa and pIV proteins. The pIIIa protein was found to be the most highly modified protein with now 18 verified sites of phosphorylation, three sites of nitrated tyrosine and one sulfated tyrosine. Nitrated tyrosines were also identified in pII. Lysine acetylations were detected in pII and pVI. The findings make the Ad2 virion much more complex than hitherto believed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.