Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.
A reduced graphene oxide-silver nanohybrid (Ag-RGO) was prepared by simultaneous reduction of graphene oxide and silver ions, using the aqueous extract of the Colocasia esculenta leaf. The nanohybrid demonstrated better antimicrobial activity than the individual nanomaterials. Excellent cytocompatibility was observed for peripheral blood mononuclear cells (PBMCs) and mammalian red blood cells (RBCs). An acute dermal toxicity study on wistar rats confirmed no induction of direct or indirect toxicity to the host. Thus, this nanohybrid holds potential for applications as a non-toxic topical antimicrobial agent in dressings, bandages, ointments etc.
The study focuses on the preparation of a hyperbranched epoxy/clay‐silver nanocomposite based skin tissue scaffold with excellent mechanical attributes, biocompatibility and an infection resistant surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.