Bisphenol S (4-hydroxyphenyl sulfone, BPS) is increasingly used as a bisphenol A (BPA) alternative. The global usage of BPS and its analogues (BPSs) resulted in the frequent detection of their residues in multiple environmental media. We investigated their potential endocrine-disrupting effects toward thyroid hormone receptor (TR) β. The molecular interaction of BPSs toward TRβ ligand binding domain (LBD) was probed by fluorescence spectroscopy and molecular dynamics (MD) simulations. BPSs caused the static fluorescence quenching of TRβ LBD. The 100 ns MD simulations revealed that the binding of BPSs caused significant changes in the distance between residue His435 at helix 11(H11) and residue Phe459 at H12 in comparison to no ligand-bound TRβ LBD, indicating relative repositioning of H12. The recombinant two-hybrid yeast assay showed that tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A (TBBPA) have potent antagonistic activity toward TRβ, with an IC of 10.1 and 21.1 nM, respectively. BPS and BPA have the antagonistic activity with IC of 312 and 884 nM, respectively. BPSs significantly altered the expression level of mRNA of TRβ gene in zebrafish embryos. BPS and TBBPS at environmentally relevant concentrations have antagonistic activity toward TRβ, implying that BPSs are not safe BPA alternatives in many BPA-free products. Future health risk assessments for TR disruption and other adverse effects should focus more on the structure-activity relationship in the design of environmentally benign BPA alternatives.
Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.