In recent years, breakthroughs have been made in tumor immunotherapy. However, tumor immunotherapy, particularly anti-PD-1/PD-L1 immune checkpoint inhibitors, is effective in only a small percentage of patients in solid cancer. How to improve the efficiency of cancer immunotherapy is an urgent problem to be solved. As we all know, the state of the tumor microenvironment (TME) is an essential factor affecting the effectiveness of tumor immunotherapy, and the cancer-associated fibroblasts (CAFs) in TME have attracted much attention in recent years. As one of the main components of TME, CAFs interact with cancer cells and immune cells by secreting cytokines and vesicles, participating in ECM remodeling, and finally affecting the immune response process. With the in-depth study of CAFs heterogeneity, new strategies are provided for finding targets of combination immunotherapy and predicting immune efficacy. In this review, we focus on the role of CAFs in the solid cancer immune microenvironment, and then further elaborate on the potential mechanisms and pathways of CAFs influencing anti-PD-1/PD-L1 immunotherapy. In addition, we summarize the potential clinical application value of CAFs-related targets and markers in solid cancers.
According to reports, gut microbiota and metabolites regulate the intestinal immune microenvironment. In recent years, an increasing number of studies reported that bile acids (BAs) of intestinal flora origin affect T helper cells and regulatory T cells (Treg cells). Th17 cells play a pro‐inflammatory role and Treg cells usually act in an immunosuppressive role. In this review, we emphatically summarised the influence and corresponding mechanism of different configurations of lithocholic acid (LCA) and deoxycholic acid (DCA) on intestinal Th17 cells, Treg cells and intestinal immune microenvironment. The regulation of BAs receptors G protein‐coupled bile acid receptor 1 (GPBAR1/TGR5) and farnesoid X receptor (FXR) on immune cells and intestinal environment are elaborated. Furthermore, the potential clinical applications above were also concluded in three aspects. The above will help researchers better understand the effects of gut flora on the intestinal immune microenvironment via BAs and contribute to the development of new targeted drugs.
According to reports, gut microbiota and metabolites regulate intestinal immune microenvironment. In recent years, an increasing number of studies reported that bile acids (BAs) of intestinal flora origin affects T helper cells and Treg cells. Th17 cells play a pro-inflammatory role and Treg cells usually act an immunosuppressive role. In this review, we emphatically summarized the influence and corresponding mechanism of different configurations of the LCA and DCA on intestinal Th17 cells, Treg cells and intestinal immune microenvironment. The regulation of BAs receptors G protein-coupled bile acid receptor 1 (GPBAR1/TGR5) and farnesoid X receptor (FXR) on immune cells and intestinal environment are elaborated. Furthermore, the potential clinical applications above were also concluded in three aspects. These above will help researchers better understand the effects of gut flora on the intestinal immune microenvironment via BAs and contribute to the development of new targeted drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.