Thin films of transition metal oxides such as molybdenum oxide (MoOx) are attractive for application in silicon heterojunction solar cells for their potential to yield large short‐circuit current density. However, full control of electrical properties of thin MoOx layers must be mastered to obtain an efficient hole collector. Here, we show that the key to control the MoOx layer quality is the interface between the MoOx and the hydrogenated intrinsic amorphous silicon passivation layer underneath. By means of ab initio modelling, we demonstrate a dipole at such interface and study its minimization in terms of work function variation to enable high performance hole transport. We apply this knowledge to experimentally tailor the oxygen content in MoOx by plasma treatments (PTs). PTs act as a barrier to oxygen diffusion/reaction and result in optimal electrical properties of the MoOx hole collector. With this approach, we can thin down the MoOx thickness to 1.7 nm and demonstrate short‐circuit current density well above 40 mA/cm2 and a champion device exhibiting 23.83% conversion efficiency.
O. (2022). Effects of (i)a-Si: H deposition temperature on high-efficiency silicon heterojunction solar cells. Progress in Photovoltaics: research and applications.
In recent years, the emerging two-dimensional (2D) nanomaterials have shown great potential for a variety of applications such as electronics, catalysis, supercapacitors, and energy materials. In the biomedical arena, these nanomaterials, especially 2D-ultrathin nanomaterials, have also been regarded as promising nano-carriers and/or diagnostic agents for cancer diagnosis and treatment, owing to their remarkable mechanical, photothermal, and optical properties. In this review, we provide the recent development of the nanoplatforms based on near-infrared/ultrasound-sensitive 2D-materials, representatively such as graphdiyne (GDY), black phosphorus, transition metal dichalcogenides (TMDs), and antimonene, for non-invasive cancer therapeutics including photothermal, photodynamic and sonodynamic approaches. The general properties of these 2D nanomaterials linking to biomedical interests are first introduced, followed by the fabrication processes of diverse nano-platforms and related outcomes of cancer diagnosis and treatments. We also outline the current challenges and prospects of the 2D materials for non-invasive approaches to cancer treatments in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.