The hypokinetic motor symptoms of Parkinsons disease (PD) are closely linked with a decreased motor cortical output as a consequence of elevated basal ganglia inhibition. However, whether and how the loss of dopamine alters the cellular properties of motor cortical neurons in PD remains undefined. We induced experimental parkinsonism in adult C57BL6 mice of both sexes by injecting neurotoxin, 6-hydroxydopamine, into the medial forebrain bundle. By using ex vivo patch-clamp recording and retrograde tracing approach, we found that the intrinsic excitability of pyramidal tract neurons (PTNs) in the motor cortical layer 5b was greatly decreased following the degeneration of midbrain dopaminergic neurons; but the intratelencephalic neurons (ITNs) were not affected. The cell-type-specific intrinsic adaptations were associated with a significant broadening of the action potentials in PTNs but not in ITNs. Moreover, the loss of midbrain dopaminergic neurons impaired the capability of M1 PTNs to sustain high-frequency firing, which could underlie their abnormal pattern of activity in the parkinsonian state. We also showed that the decreased excitability and broadened action potentials were largely caused by a disrupted function of the large conductance, Ca2+-activated K+ channels. The restoration of dopaminergic neuromodulation failed to rescue the impaired intrinsic excitability of M1 PTNs in parkinsonian mice. Altogether, our data show cell-type-specific decreases of the excitability of M1 pyramidal neurons following the loss of midbrain dopaminergic neurons. Thus, intrinsic adaptations in the motor cortex, together with pathological basal ganglia inhibition, underlie the decreased motor cortical output in parkinsonian state and exacerbate parkinsonian motor deficits
The hypokinetic motor symptoms of Parkinson's disease (PD) are closely linked with a decreased motor cortical output as a consequence of elevated basal ganglia inhibition. However, whether and how the loss of dopamine (DA) alters the cellular properties of motor cortical neurons in PD remains undefined. We induced parkinsonism in adult C57BL/6 mice of both sexes by injecting neurotoxin, 6-hydroxydopamine (6-OHDA), into the medial forebrain bundle. By using ex vivo patch-clamp recording and retrograde tracing approach, we found that the intrinsic excitability of pyramidal tract neurons (PTNs) in the primary motor cortical (M1) layer (L)5b was greatly decreased in parkinsonism; but the intratelencephalic neurons (ITNs) were not affected. The cell type-specific intrinsic adaptations were associated with a depolarized threshold and broadened width of action potentials (APs) in PTNs. Moreover, the loss of midbrain dopaminergic neurons impaired the capability of M1 PTNs to sustain high-frequency firing, which could underlie their abnormal pattern of activity in the parkinsonian state. We also showed that the decreased excitability in parkinsonism was caused by an impaired function of both persistent sodium channels and the large conductance, Ca 21 -activated K 1 channels. Acute activation of dopaminergic receptors failed to rescue the impaired intrinsic excitability of M1 PTNs in parkinsonian mice. Altogether, our data demonstrated a cell typespecific decrease of the excitability of M1 pyramidal neurons in parkinsonism. Thus, intrinsic adaptations in the motor cortex provide novel insight in our understanding of the pathophysiology of motor deficits in PD.
Background Brain-derived estrogen is implicated in pain-related aversion; however, which estrogen receptors mediate this effect remains unclear. This study hypothesized that the different estrogen receptors in the rostral anterior cingulate cortex play distinct roles in pain-related aversion. Methods Formalin-induced conditioned place avoidance and place escape/avoidance paradigms were used to evaluate pain-related aversion in rodents. Immunohistochemistry and Western blotting were used to detect estrogen receptor expression. Patch-clamp recordings were used to examine N-methyl-d-aspartate–mediated excitatory postsynaptic currents in rostral anterior cingulate cortex slices. Results The administration of the estrogen receptor-β antagonist 4-(2-phenyl-5,7-bis [trifluoromethyl] pyrazolo [1,5-a] pyrimidin-3-yl) phenol (PHTPP) or the G protein–coupled estrogen receptor-1 antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta [c] quinolone (G15) but not the estrogen receptor-α antagonist 1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride (MPP) into the rostral anterior cingulate cortex blocked pain-related aversion in rats (avoidance score, mean ± SD: 1,3-bis [4-hydroxyphenyl]-4-methyl-5-(4-[2-piperidinylethoxy] phenol)-1H-pyrazole dihydrochloride (MPP): 47.0 ± 18.9%, 4-(2-phenyl-5,7-bis [trifluoromethyl] pyrazolo [1,5-a] pyrimidin-3-yl) phenol (PHTPP): −7.4 ± 20.6%, and [3aS*,4R*,9bR*]-4-[6-bromo-1,3-benzodioxol-5-yl]-3a,4,5,9b-3H-cyclopenta [c] quinolone (G15): −4.6 ± 17.0% vs. vehicle: 46.5 ± 12.2%; n = 7 to 9; P < 0.0001). Consistently, estrogen receptor-β knockdown but not estrogen receptor-α knockdown by short-hairpin RNA also inhibited pain-related aversion in mice (avoidance score, mean ± SD: estrogen receptor-α–short-hairpin RNA: 26.0 ± 7.1% and estrogen receptor-β–short-hairpin RNA: 6.3 ± 13.4% vs. control short-hairpin RNA: 29.1 ± 9.1%; n = 7 to 10; P < 0.0001). Furthermore, the direct administration of the estrogen receptor-β agonist 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN) or the G protein–coupled estrogen receptor-1 agonist (±)-1-([3aR*,4S*,9bS*]-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta [c]quinolin-8-yl)-ethanone (G1) into the rostral anterior cingulate cortex resulted in conditioned place avoidance (avoidance score, mean ± SD: 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN): 35.3 ± 9.5% and (±)-1-([3aR*,4S*,9bS*]-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta [c]quinolin-8-yl)-ethanone (G1): 43.5 ± 22.8% vs. vehicle: 0.3 ± 14.9%; n = 8; P < 0.0001) but did not affect mechanical or thermal sensitivity. The activation of the estrogen receptor-β/protein kinase A or G protein–coupled estrogen receptor-1/protein kinase B pathway elicited the long-term potentiation of N-methyl-d-aspartate–mediated excitatory postsynaptic currents. Conclusions These findings indicate that estrogen receptor-β and G protein–coupled estrogen receptor-1 but not estrogen receptor-α in the rostral anterior cingulate cortex contribute to pain-related aversion by modulating N-methyl-d-aspartate receptor–mediated excitatory synaptic transmission. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
The genus Streptomyces have been highly regarded for their important source of natural products. Combined with the technology of genome sequencing and mining, we could identify the active ingredients from fermentation broth quickly. Here, we report on Streptomyces sp. strain fd1-xmd, which was isolated from a soil sample collected in Shanghai. Interestingly, the fermentation broth derived from this strain demonstrated broad-spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and eukaryotes. To identify the antimicrobial substances and their biosynthetic gene clusters, we sequenced the fd1-xmd strain and obtained a genome 7,929,999 bp in length. The average GC content of the chromosome was 72.5 mol%. Knockout experiments demonstrated that out of eight biosynthetic gene clusters we could identify, two are responsible for the biosynthesis of the antibiotics streptothricin (ST) and tunicamycin (TM). The ST biosynthetic gene cluster from fd1-xmd was verified via successful heterologous expression in Streptomyces coelicolor M1146. ST production had a yield of up to 0.5 g/L after the optimization of culture conditions. This study describes a novel producer of ST and TM and outlines the complete process undertaken for Streptomyces sp. strain fd1-xmd genome mining.
The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.