IQGAP1 is a scaffolding protein that can regulate several distinct signaling pathways. The accumulating evidence has demonstrated that IQGAP1 plays an important role in tumorigenesis and tumor progression. However, the function of IQGAP1 in esophageal squamous cell carcinoma (ESCC) has not been thoroughly investigated. In the present study, we showed that IQGAP1 was overexpressed in ESCC tumor tissues, and its overexpression was correlated with the invasion depth of ESCC. Importantly, by using RNA interference (RNAi) technology we successfully silenced IQGAP1 gene in two ESCC cell lines, EC9706 and KYSE150, and for the first time found that suppressing IQGAP1 expression not only obviously reduced the tumor cell growth, migration and invasion in vitro but also markedly inhibited the tumor growth, invasion, lymph node and lung metastasis in xenograft mice. Furthermore, Knockdown of IQGAP1 expression in ESCC cell lines led to a reversion of epithelial to mesenchymal transition (EMT) progress. These results suggest that IQGAP1 plays crucial roles in regulating ESCC occurrence and progression. IQGAP1 silencing may therefore develop into a promising novel anticancer therapy.
Pancreatic cancer is a highly lethal malignancy and one of the leading causes of cancer-related death. During the development and progression of cancer, tumor angiogenesis plays a crucial role. A great deal of evidence has revealed that human mast cells (MCs) contributed to tumor angiogenesis through releasing several pro-angiogenetic factors, among which tryptase is one of the most active. However, the role of mast cell tryptase (MCT) in human pancreatic cancer angiogenesis is still not well documented. In this study, we examined the MCT levels in serum from pancreatic cancer patients and evaluated the correlationship of the MCT level and tumor angiogenesis. In addition, the effect of MCT on endothelial cell proliferation and tube formation was investigated both in vitro and in nude mice bearing pancreatic tumor. It was found that MCT contributes to endothelial cell growth and tube formation via up-regulation of angiopoietin-1 expression. Moreover, using the MCT inhibitor nafamostat, tryptase-induced angiogenesis was obviously suppressed both in vitro and in vivo. Our findings suggest that MCT plays an important role in pancreatic cancer angiogenesis and tumor growth via activating the angiopoietin-1 pathway, and tryptase inhibitors may be evaluated as an effective anti-angiogenetic approach in pancreatic cancer therapy.
Background: Melanocytic nevi present at birth, or within the first few months of life, are defined as congenital melanocytic nevi (CMN). Neurocutaneous melanosis (NCM) is a rare disorder, represents pigment cell tumors of the leptomeninges, and occurs in association with large or multiple CMN. NCM carries an extremely poor prognosis. NRAS and BRAFV600E genetic mutations were reported in CMN. Our aim was to report 2 rare cases of NCM associated with large-sized CMN.Materials and Methods: Two cases were enrolled, a 19-month-old boy with multiple satellite and giant CMN (GCMN); and a 57-month-old girl with large CMN (LCMN). Both patients had central nervous system (CNS) symptoms, and therefore, were studied from clinical, radiological, and immunohistopathological aspects. Cytogenetic study was done for one of them.Results: Both patients had CMN located in the head/neck, with no cutaneous melanoma. MRI was the most reliable method for early detection of NCM. NCM was proved in the 2 studied cases by immunohistopathology performed after surgery. The boy with GCMN carried NRAS mutation at codon 61, in addition to the characteristic facial features relevant to RASopathies. Both patients died despite surgical intervention.Conclusion: Our report highlights the need for pediatricians to be alert to the risk of NCM in association with CMN, especially when a CMN lesion is large, or there are multiple satellite lesions, or the nevus location is at the head or neck. Moreover, in the setting of CMN, the absence of skin melanoma does not exclude the presence of NCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.