oatp1 is an hepatic sinusoidal organic anion transporter that mediates uptake of various structurally unrelated organic compounds from blood. The driving force for uptake on oatp1 has not been identified, although a role for bicarbonate has recently been proposed. The present study examined whether oatp1-mediated uptake is energized by efflux (countertransport) of intracellular reduced glutathione (GSH), and whether hydrophobic glutathione S-conjugates such as leukotriene C 4 (LTC 4 ) and S-dinitrophenyl glutathione (DNP-SG) form a novel class of substrates for oatp1.
One member of the OATP family of transporters, rat Oatp1, functions as an anion exchanger that is driven in part by the glutathione (GSH) electrochemical gradient, indicating that other OATP-related transporters may also be energized by this mechanism. The present study examined whether rat Oatp2 is also an anion exchanger, and, if so, whether it is energized by the GSH electrochemical gradient. As with Oatp1, uptake of 10 microM [(3)H]taurocholate in Oatp2-expressing Xenopus laevis oocytes was trans-stimulated by intracellular 0.2 mM unlabeled taurocholate, indicating bidirectional transport. Interestingly, [(3)H]taurocholate uptake in Oatp2-expressing oocytes was also trans-stimulated when oocytes were preloaded with GSH, S-methylglutathione, S-sulfobromophthalein-glutathione, S-dinitrophenyl glutathione, or ophthalmic acid (a GSH analog) but not by glutarate or N-acetylcysteine, suggesting that GSH derivatives and conjugates may function as intracellular substrates for Oatp2. Support for this hypothesis was provided by the demonstration of enhanced [(3)H]GSH and [(3)H]S-(2,4-dinitrophenyl)-glutathione efflux in Oatp2-expressing oocytes. However, in contrast to Oatp1, extracellular GSH failed to cis-inhibit uptake of [(3)H]taurocholate or [(3)H]digoxin in Oatp2-expressing oocytes, indicating that the stimulatory effect of high intracellular GSH concentrations is not due to a coupled exchange mechanism. Taken together, the results indicate that Oatp2 mediates bidirectional transport of organic anions by a GSH-sensitive facilitative diffusion mechanism and suggest that this transporter may play a role in cellular export of specific organic molecules.
Using oligonucleotide microarray analysis, THY1, mapping close to a previously defined 11q22-23 nasopharyngeal carcinoma (NPC) critical region was identified as showing consistent downregulated expression in the tumour segregants, as compared to their parental tumour-suppressing microcell hybrids (MCHs). Gene expression and protein analyses show that THY1 was not expressed in the NPC HONE1 recipient cells, tumour segregants, and other NPC cell lines; THY1 was exclusively expressed in the non-tumourigenic MCHs. The mechanism of THY1 gene inactivation in these cell lines was attributed to hypermethylation. Clinical study showed that in 65% of NPC specimens there was either downregulation or loss of THY1 gene expression. Using a tissue microarray and immunohistochemical staining, 44% of the NPC cases showed downregulated expression of THY1 and 9% lost THY1 expression. The frequency of THY1 downregulated expression in lymph node metastatic NPC was 63%, which was significantly higher than in the primary tumour (33%). After transfection of THY1 gene into HONE1 cells, a dramatic reduction of colony formation ability was observed. These findings suggest that THY1 is a good candidate tumour suppressor gene in NPC, which is significantly associated with lymph node metastases.
The relationship among intracellular pH (pHi), -log10 intracellular Ca2+ concentration (pCai) and gap junctional conductance, the participation of Ca2+ stores, and the role of calmodulin in channel regulation have been studied in Xenopus oocytes, expressing the native connexin (Cx38), exposed to external solutions bubbled with 100% CO2. The time courses of pHi [measured with 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorscein (BCECF)], pCai (measured with the membrane-associated fura-C18) and junctional conductance (measured with a double voltage-clamp protocol) were compared. The data obtained confirm previous evidence for a closer relationship of junctional conductance with pCai than with pHi. Evidence for an inhibitory effect of intracellularly injected ruthenium red or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) on CO2-induced uncoupling, coupled to negative results with Ca2+-free external solutions, point to a low-pHi -induced Ca2+ release from internal stores, likely to be primarily mitochondria. The hypothesis proposing a participation of calmodulin in channel gating was tested by studying the effects of calmodulin expression inhibition by intracellular injection of oligonucleotides antisense to the two calmodulin mRNAs expressed in the oocytes. Calmodulin mRNA was permanently eliminated in 5h. The oocytes injected with the antisense nucleotides progressively lost the capacity to uncouple with CO2 within 72 h. The effect of CO2 on junctional conductance was reduced by approximately 60% in 24 h, by approximately 76% in 48 h and by approximately 93% in 72 h. Oocytes that had lost gating sensitivity to CO2 partially recovered gating competency following calmodulin injection. The data suggest that lowered pHi uncouples gap junctions by a Ca2+- calmodulin-mediated mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.