Solid dispersion (SD) is a useful approach to improve the dissolution rate and bioavailability of poorly water-soluble drugs. This work investigated the effects of carrier material lipophilicity and preparation method on the properties of andrographolide (AG)–SD. The SDs of AG and the carrier materials, polyethylene glycol (PEG) and PEG grafted with carbon chains of different length (grafted PEG), have been prepared by spray-drying and vacuum-drying methods. In AG–SDs prepared by the different preparation methods with the same polymer as carrier material, the intermolecular interaction, 5% weight-loss temperature, the melting temperature (Tm), surface morphology, crystallinity, and dissolution behavior have significant differences. In the AG–SDs prepared by the same spray-drying method with different grafted PEG as carrier material, Tm, surface morphology, crystallinity, and dissolution behavior had little difference. In the AG–SDs prepared by the same vacuum-drying method with different grafted PEG as carrier material, the crystallinity and Tm decreased, and the dissolution rate of AG increased with the increase of grafted PEG lipophilicity. The preparation method has an important effect on the properties of SD. The increase of carrier material lipophilicity is beneficial to the thermal stability of SD, the decrease of crystallinity and the increase of dissolution rate of a poorly water-soluble drug in the SD.
Solid dispersion (SD) is the effective approach to improve the dissolution rate and bioavailability of class II drugs with low water solubility and high tissue permeability in the Biopharmaceutics Classification System. is study investigated the effects of polyethylene glycol (PEG) molecular weight in carrier material PEG palmitate on the properties of andrographolide (AG)-SD. We prepared SDs containing the poorly water-soluble drug AG by the freeze-drying method. e SDs were manufactured from two different polymers, PEG4000 palmitate and PEG8000 palmitate. e physicochemical properties of the AG-SDs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, dissolution testing, and so on. We found that AG-PEG4000 palmitate-SD and AG-PEG8000 palmitate-SD were similar in the surface morphology, specific surface area, and pore volume. Compared with the AG-PEG4000 palmitate-SD, the intermolecular interaction between PEG8000 palmitate and AG was stronger, and the thermal stability of AG-PEG8000 palmitate-SD was better. In the meanwhile, the AG relative crystallinity was lower and the AG dissolution rate was faster in AG-PEG8000 palmitate-SD. e results demonstrate that the increasing PEG molecular weight in the PEG palmitate can improve the compatibility between the poorly water-soluble drug and carrier material, which is beneficial to improve the SD thermal stability and increases the dissolution rate of poorly water-soluble drug in the SD.
Objectives The current study was focused on preparing curcumin (CUR) supersaturated self-nano-emulsion (PI-CUR-SNEDDS) using hydrophilic polymer and to study the influence of polymer precipitation inhibitor on the physicochemical and biopharmaceutical properties of the PI-CUR-SNEDDS. Methods PI-CUR-SNEDDS were prepared using hydrophilic polymer in order to maintain the supersaturation of CUR in nano-emulsion solution, artificial gastrointestinal fluid (AGF), and the precipitates formed, and characterised by in vitro dispersion tests, in vitro intestinal absorption and in vivo pharmacokinetic and compared with CUR-SNEDDS. Key findings PI-CUR-SNEDDS prepared with 2% hydroxypropyl methylcellulose 55–60 (HPMC55-60) as precipitation inhibitor (PI) significantly improved the viscosity, physical stability and CUR’s equilibrium solubility of nanoemulsion. HPMC55-60 and CUR interact in AGF through intermolecular interactions, form hydrogen bonds, and produce amorphous precipitates. Compared with CUR-SNEDDS, the proportion of CUR in the hydrophilic phase increased by about 3-fold, and apparent permeability coefficient (Papp) in duodenum, jejunum, ileum, and colon increased by 2.30, 3.65, 1.54 and 2.08-fold, respectively, and the area under the plasma concentration-time curve0-12h of PI-CUR-SNEDDS also increased by 3.50-fold. Conclusions Our results suggested that HPMC55-60 maintained the CUR supersaturation state by forming hydrogen bonds with CUR, increasing the solution’s viscosity and drug solubilisation, thus improving the absorption and bioavailability of CUR.
In the work the andrographolide (AG)-solid dispersions (SDs) were prepared by the spray-drying method, using polyethylene glycol 8000 (PEG8000), Poloxamer188, polyvinylpyrrolidone K30 (PVPK30), Soluplus ® as carrier materials. The effect of different polymers as carrier materials on the properties of the AG-SDs were studied. The results showed obvious differences in intermolecular interaction, thermal stability, drug state, powder properties, dissolution behavior, and so on of AG-SDs prepared using different polymers as carrier materials. AG-PEG8000-SD was a partial-crystalline and partial-amorphous powder with smaller surface area and pore volume, but it was easy to wetting and did not swell in contact with dissolved medium. AG-Soluplus ® -SD was completely amorphous powder with larger specific surface area and pore volume, but it swelled in contact with water. Therefore, the dissolution profile of AG in AG-PEG8000-SD was similar to that in AG-Soluplus ® -SD. Soluplus ® and PEG8000 were suitable polymers to design AG-SDs, considering both physicochemical properties and dissolution behaviors. The results of this reseach showed that when selecting carrier materials for SD, we should not only consider the state of drugs in SD and the powder properties of SD, but also consider whether there is swelling when the carrier materials are in contact with the dissolution medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.