The B7/CD28 family has profound modulatory effects in immune responses and constitutes important targets for the development of novel therapeutic drugs against human diseases. Here we describe a new CD28 homolog (CD28H) that has unique functions in the regulation of the human immune response and is absent in mice. CD28H is constitutively expressed on all naive T cells. Repetitive antigenic exposure, however, induces a complete loss of CD28H on many T cells, and CD28H-negative T cells have a phenotype of terminal differentiation and senescence. After extensive screening in a receptor array, a B7-like molecule, B7 homolog 5 (B7-H5), was identified as a specific ligand for CD28H. B7-H5 is constitutively found in macrophages and could be induced on dendritic cells. The B7-H5/CD28H interaction co-stimulates human T cell growth and cytokine production, selectively via an AKT-dependent signaling cascade. Our study identifies a novel co-stimulatory pathway regulating human T cell responses.
B7-H3 is a B7 family molecule with T cell costimulatory function in vitro. The in vivo role of B7-H3 in the stimulation of tumor immunity is unclear. We report here that expression of B7-H3 by transfection of the mouse P815 tumor line enhances its immunogenicity, leading to the regression of tumors and amplification of a tumor-specific CD8+ CTL response in syngeneic mice. Tumor cells engineered to express B7-H3 elicit a rapid clonal expansion of P1A tumor Ag-specific CD8+ CTL in lymphoid organs in vivo and acquire the ability to directly stimulate T cell growth, division, and development of cytolytic activity in vitro. Our results thus establish a role for B7-H3 in the costimulation of T cell immune responses in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.