In the present paper results of a series of plate impact experiments designed to study spall strength in glass-fiber reinforced polymer composites (GRP) are presented. Two GRP architectures are investigated-S2 glass woven roving in Cycom 4102 polyester resin matrix and a balanced 5-harness satin weave E-glass in a Ciba epoxy (LY564) matrix. The GRP specimens were shock loaded using an 82.5 mm bore single-stage gas-gun. A velocity interferometer was used to measure the particle velocity profile at the rear (free) surface of the target plate. The spall strength of the GRP was obtained as a function of the normal component of the impact stress and the applied shear-strain by subjecting the GRP specimens to normal shock compression and combined shock compression and shear loading, respectively. The spall strengths of the two GRP composites were observed to decrease with increasing levels of normal shock compression. Moreover, superposition of shear-strain on the normal shock compression was found to be highly detrimental to the spall strength. The E-glass reinforced GRP composite was found to have a much higher level of spall strength under both normal shock compression and combined compression and shear loading when compared to the S2-glass GRP composite. The maximum spall strength of the E-glass GRP composite was found to be 119.5 MPa, while the maximum spall strength for the S2 glass GRP composite was only 53.7 MPa. These relatively low spall strength levels of the S2-glass and the E-glass fiber reinforced composites have important implications to the design and development of GRP-based light-weight integral armor.
A loss-tunable sandwiched long-period fiber grating (SLPFG) filter is proposed in this Letter. This SLPFG utilized thick SU8 photoresist layers to induce refractive index modulations, and ultrahigh period precision was hence achieved. The external force required to tune this SLPFG filter is about 0.3942 N with the deepest loss attenuation 31.29 dB at 1534 nm wavelength. This process not only improves the overall performance of traditional long period fiber grating but also cuts down the facility cost by 50%. The proposed SLPFG has great potential for low-cost and compact force transducer applications.
This study presents a new process using inductively a coupled plasma dry etching method to manufacture a long-period fiber grating filter with exact period, vertical sidewalls, and smooth etched surfaces, and the filter is thus named a perfectly notched long-period fiber grating (NLPFG). This process can dramatically reduce production time, and thereby provide higher volume production. The fabricated NLPFG has periods of 640 μm, resonant-attenuation wavelengths of 1518 nm, and maximum resonance-attenuation of 21.79 dB. A force induced loss-tunable calibration of the NLPFG filter was implemented, and a monotonically increasing quadratic fitting was observed. The results demonstrated that the proposed NLPFG has a much better period precision compared to corrugated LPFG, and it has great potential for a loss-tunable filter and force transducer applications.
In the present paper, a series of plate impact shock-reshock and shock-release experiments were conducted to study the critical shear strength of a S2 glass fiber reinforced polymer (GRP) composite under shock compression levels ranging from 0.8 to 1.8 GPa. The GRP was fabricated at ARL, Aberdeen, using S2 glass woven roving in a Cycom 4102 polyester resin matrix. The experiments were conducted by using an 82.5 mm bore single-stage gas gun at Case Western Reserve University. In order to conduct shock-reshock and shock-release experiments a dual flyer plate assembly was utilized. The shock-reshock experiments were conducted by using a projectile faced with GRP and backed with a relatively high shock impedance Al 6061-T6 plate; while for the shock-release experiments the GRP was backed by a relatively lower impedance polymethyl methacrylate backup flyer plate. A multibeam velocity interferometer was used to measure the particle velocity profile at the rear surface of the target plate. By using self-consistent technique procedure described by Asay and Chabbildas [Shock Waves and High-Strain-Rate Phenomena, in Metals, edited by M. M. Myers and L. E. Murr (Plenum, New York, 1981), pp. 417–431], the critical shear strength of the GRP (2τc) was determined for impact stresses in the range of 0.8 to 1.8 GPa. The results show that the critical shear strength of the GRP is increased from 0.108 GPa to 0.682 GPa when the impact stress is increased from 0.8 to 1.8 GPa. The increase in critical shear strength may be attributed to rate-dependence and/or pressure dependent yield behavior of the GRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.