Due to its Lagrangian nature, Smoothed Particle Hydrodynamics (SPH) has been used to solve a variety of fluid-dynamic processes with highly nonlinear deformation such as debris flows, wave breaking and impact, multi-phase mixing processes, jet impact, flooding and tsunami inundation, and fluid–structure interactions. In this study, the SPH method is applied to solve the two-dimensional Shallow Water Equations (SWEs), and the solution proposed was validated against two open-source case studies of a 2-D dry-bed dam break with particle splitting and a 2-D dam break with a rectangular obstacle downstream. In addition to the improvement and optimization of the existing algorithm, the CPU-OpenMP parallel computing was also implemented, and it was proven that the CPU-OpenMP parallel computing enhanced the performance for solving the SPH-SWE model, after testing it against three large sets of particles involved in the computational process. The free surface and velocities of the experimental flows were simulated accurately by the numerical model proposed, showing the ability of the SPH model to predict the behavior of debris flows induced by dam-breaks. This validation of the model is crucial to confirm its use in predicting landslides’ behavior in field case studies so that it will be possible to reduce the damage that they cause. All the changes made in the SPH-SWEs method are made open-source in this paper so that more researchers can benefit from the results of this research and understand the characteristics and advantages of the solution proposed.
In this paper, the coupled weakly compressible (WC) and total Lagrangian (TL) smoothed particle hydrodynamics (SPH) model based on the open-source multi-physics and multi-resolution SPHinXsys library is used to simulate the structural deformation and failure problem in fluid-structure interaction (FSI). Aiming at the problem that the original TLSPH method could not simulate the cracks and their propagation, the fracture model based on TLSPH is established, and then verified by fast-loading and slow-loading cases respectively. With the fracture model in hand, the TLSPH method is coupled with the WCSPH method to simulate the breaking dam flow impacting on an elastic/elastoplastic baffle. The comparison with the literature data shows that the present coupled WC-TLSPH model can accurately simulate the FSI problem where figurative fracture process is involved, indicating the compromising potential of the established model to simulate the elastoplastic structural failure in scientific and industrial applications.
A large amount of wastewater from industrial and urban residents enters rivers and lakes through the sewage outlet, causing a deterioration of water quality near the sewage outlet. The smoothed particle hydrodynamics (SPH) formulation based on the open-source Fortran code SPHysics is extended to solve the advective diffusion for the evolution of the pollution distribution with the shallow water equation (SWE). Several numerical cases, such as the uniform flow and dam-break flows in one and two dimensions, are studied to verify the accuracy of the present SPH-SWE diffusion model. The results are in good agreement with the analytical solutions. The concentration of the negative value and oscillation could be avoided. It demonstrates that the current SPH-SWE diffusion model has good stability and reliability for solving the pollutant transport equation. The actual terrain case is also simulated to predict the concentration distribution of the river. The concentration is distributed in the center of the Nanmenxia River, where the flow velocity is relatively high. The simulation results are reasonable, implying that it has a high potential in predicting the diffusion process of pollutants in the actual terrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.