Data from multifactor HCI experiments often violates the assumptions of parametric tests (i.e., nonconforming data). The Aligned Rank Transform (ART) has become a popular nonparametric analysis in HCI that can fnd main and interaction efects in nonconforming data, but leads to incorrect results when used to conduct post hoc contrast tests. We created a new algorithm called ART-C for conducting contrast tests within the ART paradigm and validated it on 72,000 synthetic data sets. Our results indicate that ART-C does not infate Type I error rates, unlike contrasts based on ART, and that ART-C has more statistical power than a t-test, Mann-Whitney U test, Wilcoxon signed-rank test, and ART. We also extended an open-source tool called ARTool with our ART-C algorithm for both Windows and R. Our validation had some limitations (e.g., only six distribution types, no mixed factorial designs, no random slopes), and data drawn from Cauchy distributions should not be analyzed with ART-C.
Data from multifactor HCI experiments often violates the normality assumption of parametric tests (i.e., nonconforming data). The Aligned Rank Transform (ART) is a popular nonparametric analysis technique that can find main and interaction effects in nonconforming data, but leads to incorrect results when used to conduct contrast tests. We created a new algorithm called ART-C for conducting contrasts within the ART paradigm and validated it on 72,000 data sets. Our results indicate that ART-C does not inflate Type I error rates, unlike contrasts based on ART, and that ART-C has more statistical power than a t-test, Mann-Whitney U test, Wilcoxon signed-rank test, and ART. We also extended a tool called ARTool with our ART-C algorithm for both Windows and R. Our validation had some limitations (e.g., only six distribution types, no mixed factorial designs, no random slopes), and data drawn from Cauchy distributions should not be analyzed with ART-C.
We examine two key human performance characteristics of a pen-like tangible input device that executes a different command depending on which corner, edge, or side contacts a surface. The manipulation time when transitioning between contacts is examined using physical mock-ups of three representative device sizes and a baseline pen mock-up. Results show the largest device is fastest overall and minimal differences with a pen for equivalent transitions. Using a hardware prototype able to sense all 26 different contacts, a second experiment evaluates learning and recall. Results show almost all 26 contacts can be learned in a two-hour session with an average of 94% recall after 24 hours. The results provide empirical evidence for the practicality, design, and utility for this type of tangible pen-like input.
No abstract
We designed and created a new self-contained tangible pen-like input device prototype that can sense all 26 contacts and works with any capacitive display using a conductive case designed with pliable corners. Contacts are distinguished using the device angle from an internal IMU. We further designed a 3D "mirror" visualization that displays a re-configurable mapping of commands to contacts to enable discovery of command-to-contact mappings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.