It is well known that neural activity exhibits variability, in the sense that identical sensory stimuli produce different responses, but it has been difficult to determine what this variability means. Is it noise, or does it carry important information – about, for example, the internal state of the organism? We address this issue from the bottom up, by asking whether small perturbations to activity in cortical networks are amplified. Based on in vivo whole-cell recordings in rat barrel cortex, we find that a perturbation consisting of a single extra spike in one neuron produces ~28 additional spikes in its postsynaptic targets, and we show, using simultaneous intra- and extra-cellular recordings, that a single spike produces a detectable increase in firing rate in the local network. Theoretical analysis indicates that this amplification leads to intrinsic, stimulus-independent variations in membrane potential on the order of ±2.2 - 4.5 mV – variations that are pure noise, and so carry no information at all. Therefore, for the brain to perform reliable computations, it must either use a rate code, or generate very large, fast depolarizing events, such as those proposed by the theory of synfire chains – yet in our in vivo recordings, we found that such events were very rare. Our findings are consistent with the idea that cortex is likely to use primarily a rate code.
The eukaryotic initiation factor eIF4E binds the mRNA 5 0 cap structure and has a central role during translational initiation. eIF4E and the mechanisms to control its activity have oncogenic properties and thus have become targets for anticancer drug development. A recent study (Kentsis et al. 2004) presented evidence that the antiviral nucleoside ribavirin and its phosphorylated derivatives were structural mimics of the mRNA cap, high-affinity ligands for eIF4E, and potent repressors of eIF4E-mediated cell transformation and tumor growth. Based on these findings, we tested ribavirin, ribavirin triphosphate (RTP), and the dinucleotide RpppG for their ability to inhibit translation in vitro. Surprisingly, the ribavirin-based compounds did not affect translation at concentrations where canonical cap analogs efficiently block cap-dependent translation. Using a set of reporter mRNAs that are translated via either cap-dependent or viral internal ribosome entry sites (IRES)-dependent initiation, we found that these ribavirin-containing compounds did inhibit translation at high (millimolar) concentrations, but there was no correlation of this inhibition with an eIF4E requirement for translation. The addition of a ribavirin-containing cap to mRNA did not stimulate translation. Fluorescence titration experiments with eIF4E and the nuclear cap-binding complex CBC indicated affinities for RTP and RpppG that were two to four orders of magnitude lower than those of m 7 GTP and m 7 GpppG. We conclude that, at least with respect to translation, ribavirin does not act in vitro as a functional mimic of the mRNA cap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.