Plant vascular tissues, xylem and phloem, differentiate in distinct patterns from procambial cells as an integral transport system for water, sugars, and signaling molecules. Procambium formation is promoted by high auxin levels activating class III homeodomain leucine zipper (HD-ZIP III) transcription factors (TFs). In the root of Arabidopsis (Arabidopsis thaliana), HD-ZIP III TFs dose-dependently govern the patterning of the xylem axis, with higher levels promoting metaxylem cell identity in the central axis and lower levels promoting protoxylem at its flanks. It is unclear, however, by what mechanisms the HD-ZIP III TFs control xylem axis patterning. Here, we present data suggesting that an important mechanism is their ability to moderate the auxin response. We found that changes in HD-ZIP III TF levels affect the expression of genes encoding core auxin response molecules. We show that one of the HD-ZIP III TFs, PHABULOSA, directly binds the promoter of both MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5, a key factor in vascular formation, and IAA20, encoding an auxin/indole acetic acid protein that is stable in the presence of auxin and able to interact with and repress MP activity. The double mutant of IAA20 and its closest homolog IAA30 forms ectopic protoxylem, while overexpression of IAA30 causes discontinuous protoxylem and occasional ectopic metaxylem, similar to a weak loss-of-function mp mutant. Our results provide evidence that HD-ZIP III TFs directly affect the auxin response and mediate a feed-forward loop formed by MP and IAA20 that may focus and stabilize the auxin response during vascular patterning and the differentiation of xylem cell types.
Steroidal glycoalkaloids (SGA) are sterol-derived neurotoxic defence substances present in several members of the Solanaceae. In the potato (Solanum tuberosum), high SGA levels may render tubers harmful for consumption. Tuber SGA levels depend on genetic factors, and can increase as a response to certain stresses and environmental conditions. To identify genes underlying the cultivar variation in tuber SGA levels, we investigated two potato cultivars differing in their SGA accumulation during wounding or light exposure; two known SGA-inducing treatments. Using microarray analysis coupled to sterol and SGA quantifications, we identified a small number of differentially expressed genes that were associated with increased SGA levels. Two of these genes, encoding distinct types of sterol Δ24-reductases, were by sense/antisense expression in transgenic potato plants shown to have differing roles in sterol and SGA metabolism. The results show that an increased SGA level in potato tubers during both wounding and light exposure is mediated by coordinated expression of a set of key genes in isoprenoid and steroid metabolism, and suggest that differences in this expression underlie cultivar variations in SGA levels. These results may find use within potato breeding and quality assessment.
Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.
Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L.) affects aphid performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist green peach aphid (Myzus persicae Sulzer). There were no consistent effects on aphid settling or preference or on parameters of life span and long-term fecundity. However, short-term tests with apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis.
To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were darkgreen dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of a and b forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels.Sterols are important components of the membrane system in eukaryotes. In the membrane, sterols contribute to its physical properties and the activity of membrane-bound proteins. Sterols are also metabolic precursors to steroid hormones, and can function as signaling molecules by binding to regulatory proteins. While these functional aspects of sterols to a large extent are conserved within eukaryotes, the chemical structure of sterols varies considerably among different organisms (Hartmann, 1998). The main sterol in vertebrates is cholesterol, a sterol with eight carbon atoms in its side chain (a C8 sterol), while fungi contain ergosterol, a C9 sterol. Plants are characterized by a mixture of C8, C9, and C10 sterols, such as cholesterol, campesterol, and sitosterol, respectively (Fig. 1A). Insects are unable to synthesize sterols de novo, and depend on an intake of sterols or metabolic precursors from their diet.Due to the complex cellular functions of sterols, a deficient sterol metabolism often leads to adverse developmental effects. To ensure an adequate sterol level, eukaryotes have evolved different regulatory mechanisms (Espenshade and Hughes, 2007). Cholesterol homeostasis in humans involves membranebound transcription factors, denoted sterol regulatory element-binding proteins (SREBPs), which directly activate expression of genes in the syn...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.