Drinking water supply is at the core of both, humanitarian action in times of crisis, as well as national policies for regular and emergency supply. In countries with a continuous water supply, the population mostly relies ingenuously on the permanent availability of tap water due to high supply standards. In case of a disruption in the drinking water infrastructure, minimum supply standards become important for emergency management during disasters. However, wider recognition of this issue is still lacking, particularly in countries facing comparably fewer disruptions. Several international agencies provide guideline values for minimum water provision standards in case of a disaster. Acknowledging that these minimum standards were developed for humanitarian assistance, it remains to be analyzed whether these standards apply to disaster management in countries with high supply standards. Based on a comprehensive literature review of scientific publications and humanitarian guidelines, as well as policies from selected countries, current processes, contents, and shortcomings of emergency water supply planning are assessed. To close the identified gaps, this paper flags potential improvements for emergency water supply planning and identifies future fields of research.
Current agendas such as the Sendai Framework for Disaster Risk Reduction or the Sustainable Development Goals are demanding more integration of disaster risk management into other thematic fields and relevant sectors. However, certain thematic fields such as shelter planning and critical infrastructure have not been integrated yet. This article provides an analysis of minimum humanitarian standards contained in the well-known Sphere handbook. Gaps are identified for several critical infrastructure services. Moreover, guidance on how to derive infrastructure or lifeline needs has been found missing. This article analyses the missing service supply and infrastructure identification items and procedures. The main innovation is a more integrative perspective on infrastructure that can improve existing minimum humanitarian standards. It can guide the provision of infrastructure services to various types for different hazard scenarios, hence make humanitarian aid and shelter planning more sustainable in terms of avoiding infrastructure or lifeline shortages.
The drinking water supply is a core element of national regulations for normal and emergency supply as well as coping with crisis events. Particularly with regard to the interdependence of critical infrastructures means that water supply failures can have far-reaching consequences and endanger the safety of a society, e.g., by impairing hospital operations. In case of an emergency in the drinking water infrastructure, minimum supply standards, e.g., for patients in hospitals, become important for emergency management during crisis situations. However, wider recognition of this issue is still lacking, particularly in countries facing comparably minor water supply disruptions. Several international agencies provide guideline values for minimum water supply standards for hospitals in case of a disaster. Acknowledging these minimum standards were developed for humanitarian assistance or civil protection, it remains to be analyzed whether these standards apply to disaster management in countries with high water and healthcare supply standards. Based on a literature review of scientific publications and humanitarian guidelines, as well as policies from selected countries, current processes, contents, and shortcomings of emergency water supply planning are assessed. To close the identified gaps, this paper indicates potential improvements for emergency water supply planning in general as well as for supply of hospitals and identifies future fields of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.