Considerable research has investigated infants’ numerical capacities. Studies in this domain have used procedures of habituation, head turn, violation of expectation, reaching, and crawling to ask what quantities infants discriminate and represent visually, auditorily as well as intermodally. The concensus view from these studies is that infants possess a numerical system that is amodal and aplicable to the quantification of any kind of entity and that this system is fundamentally separate from other systems that represent continuous magnitude. Although there is much evidence consistent with this view, there are also inconsistencies in the data. This paper provides a broad review of what we know, including the evidence suggesting systematic early knowledge as well as the peculiarities and gaps in the empirical findings with respect to the concensus view. We argue, from these inconsistencies, that the concensus view cannot be entirely correct. In light of the evidence, we propose a new hypothesis, the Signal Clarity hypothesis, that posits a developmental role for dimensions of continuous quantity within the discrete quantity system and calls for a broader research agenda that considers the covariation of discrete and continuous quantities not simply as a problem for experimental control but as information that developing infants may use to build more precise and robust representations of number.
Understanding how linguistic cues map to the environment is crucial for early language comprehension and may provide a way for bootstrapping and learning words. Research has suggested that learning how plural syntax maps to the perceptual environment may show a trajectory in which children first learn surrounding cues (verbs, modifiers) before a full mastery of the noun morpheme alone. The Spanish plural system of simple codas, dominated by one allomorph -s, and with redundant agreement markers, may facilitate early understanding of how plural linguistic cues map to novel referents. Two-year-old Mexican children correctly identified multiple novel object referents when multiple verbal cues in a phrase indicated plurality as well as in instances when the noun morphology in novel nouns was the ONLY indicator of plurality. These results demonstrate Spanish-speaking children’s ability to use plural noun inflectional morphology to infer novel word referents which may have implications for their word learning.
Many aspects of infant development are assessed using infant looking times to visual and audiovisual stimuli. In this article, we describe a stand-alone software package that allows simultaneous stimulus presentation to infants and recording of their looking times via a keypress by a human observer. The software was developed to run both on 64-bit Intel-based Macs running Mac OS/X 10.10 (Yosemite) or later and on 64-bit Windows 7 and 10. It can present a variety of visual and/or auditory stimuli; is customizable with respect to how trials are initiated, how trial lengths are defined, and the phases of the experiment; and can be used to record looking times online or after the fact, as well as to assess the reliability of coding. The software is freely available at http://habit.ucdavis.edu.
Infants have shown variable success in quantity comparison tasks, with infants of a given age sometimes successfully discriminating numerical differences at a 2:3 ratio but requiring 1:2 and even 1:4 ratios of change at other times. The current explanations for these variable results include the two-systems proposal - a theoretical framework that suggests that there are multiple systems at play and that these systems do not communicate early in infancy, leading to failure in certain numerical comparisons. An alternative proposal is that infants may be attending to continuous extent dimensions in these tasks rather than number per se. However, neither of these two main proposals is independently capable of accounting for the previously published data. Recently the Signal Clarity Hypothesis was proposed to account for and predict the variability (Cantrell & Smith, 2013). According to this hypothesis, infants' variable success may be understood from a framework of statistical learning taken together with the signal-to-noise ratio generated by control procedures in habituation tasks. Here we test specific predictions made by the Signal Clarity Hypothesis. Across four experiments assessing 9-month old discriminations of small and large sets (2 vs. 4 and 3 vs. 4), we demonstrate that infant success can be predicted by this novel approach and, further, that infants may discriminate smaller ratios of change than previously believed (3:4 numerical change and 2:3 cumulative area change).
Considerable research has demonstrated that English-speaking children extend nouns on the basis of shape. Here we asked whether the development of this bias is influenced by the structure of a child's primary language. We tested English- and Spanish-speaking children between the ages of 1 ; 10 and 3 ; 4 in a novel noun generalization task. Results showed that English learners demonstrated a robust shape-bias, whereas Spanish learners did not. Further, English-speaking children produced more shape-based nouns outside the laboratory than Spanish-speaking children, despite similar productive vocabulary sizes. We interpret the results as evidence that attentional biases arise from the specifics of the language environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.