Multiple myeloma (MM) is a malignancy of antibody-secreting plasma cells. B-cell plasmacytomas stimulate bone resorption and angiogenesis, resulting in osteolytic lesions in the skeleton which persist upon successful treatment of the malignancy with chemotherapy. We found that an interaction between MM cells and mesenchymal stem cells (MSCs) from bone marrow stroma results in the formation and persistence of osteolytic bone lesions. It is known that MM cells activate osteoclast activity and secrete high levels of the Wnt inhibitor, Dickkopf-1, which prevents MSCs from differentiating into osteoblasts. We show that the Wnt signaling activator 6-bromoindirubin-3-monoxime (BIO) releases MSCs from the osteoinhibitory effects of Dickkopf-1, whereas LiCl treatment does not. Additionally, we show that the >5-kDa fraction of MSC-conditioned medium promotes the proliferation of Dickkopf-1-secreting MM cells and that an interleukin-6 (IL-6)-neutralizing antibody blocks this effect. IL-6 expression levels were higher in undifferentiated MSCs than in MSCs treated with osteogenic medium, remained high in the presence of Dkk1, and were reduced by BIO treatment. Therefore, BIO treatment reduces the MSCstimulated proliferation of MM cells and may enable MSCs to repair existing osteolytic lesions. STEM CELLS 2006;24: 986 -991
Long and short interspersed elements (LINEs and SINEs) are retroelements that make up almost half of the human genome. L1 and Alu represent the most prolific human LINE and SINE families, respectively. Only a few Alu elements are able to retropose, and the factors determining their retroposition capacity are poorly understood. The data presented in this paper indicate that the length of Alu "A-tails" is one of the principal factors in determining the retropositional capability of an Alu element. The A stretches of the Alu subfamilies analyzed, both old (Alu S and J) and young (Ya5), had a Poisson distribution of A-tail lengths with a mean size of 21 and 26, respectively. In contrast, the A-tails of very recent Alu insertions (disease causing) were all between 40 and 97 bp in length. The L1 elements analyzed displayed a similar tendency, in which the "disease"-associated elements have much longer A-tails (mean of 77) than do the elements even from the young Ta subfamily (mean of 41). Analysis of the draft sequence of the human genome showed that only about 1000 of the over one million Alu elements have tails of 40 or more adenosine residues in length. The presence of these long A stretches shows a strong bias toward the actively amplifying subfamilies, consistent with their playing a major role in the amplification process. Evaluation of the 19 Alu elements retrieved from the draft sequence of the human genome that are identical to the Alu Ya5a2 insert in the NF1 gene showed that only five have tails with 40 or more adenosine residues. Sequence analysis of the loci with the Alu elements containing the longest A-tails (7 of the 19) from the genomes of the NF1 patient and the father revealed that there are at least two loci with A-tails long enough to serve as source elements within our model. Analysis of the A-tail lengths of 12 Ya5a2 elements in diverse human population groups showed substantial variability in both the Alu A-tail length and sequence homogeneity. On the basis of these observations, a model is presented for the role of A-tail length in determining which Alu elements are active.[The sequence data from this study have been submitted to GenBank under accession nos.
BackgroundExposure to anthropogenic chemicals during development can disrupt the morphogenesis of organ systems. Use of the herbicide atrazine has been debated in recent years because of its implicated, but poorly characterized, effects on vertebrates. Previous studies primarily examined the effects of atrazine exposure during metamorphosis or early developmental stages of amphibians.ObjectivesWe sought to identify and characterize the susceptibility during the often-overlooked developmental stage of organ morphogenesis.MethodsWe used a static renewal experimental treatment to investigate the effects of 10, 25, and 35 mg/L atrazine from early organ morphogenesis through the onset of tadpole feeding in the aquatic amphibian model system, Xenopus laevis. We quantified malformations of the body axis, heart, and intestine, as well as apoptosis in the midbrain and pronephric kidney.ResultsWe found a significant dose-dependent increase in the percentage of atrazine-exposed tadpoles with malformations of multiple tissues including the main body axis, circulatory system, kidney, and digestive system. Incidence of apoptotic cells also increased in the both midbrain and kidney of atrazine-exposed tadpoles.ConclusionsOur results demonstrate that acute atrazine exposure (10–35 mg/L for ≤ 48 hr) during early organ morphogenesis disrupts proper organ development in an amphibian model system. The concurrent atrazine-induced apoptosis in the pronephric kidney and midbrain begins to elucidate a mechanism by which atrazine may disrupt developmental processes in nontarget organisms.
Blood evidence is frequently encountered at the scene of violent crimes and can provide valuable intelligence in the forensic investigation of serious offences. Because many of the current enhancement methods used by crime scene investigators are presumptive, the visualisation of blood is not always reliable nor does it bear additional information. In the work presented here, two methods employing a shotgun bottom up proteomic approach for the detection of blood are reported; the developed protocols employ both an in solution digestion method and a recently proposed procedure involving immobilization of trypsin on hydrophobin Vmh2 coated MALDI sample plate. The methods are complementary as whilst one yields more identifiable proteins (as biomolecular signatures), the other is extremely rapid (5 minutes). Additionally, data demonstrate the opportunity to discriminate blood provenance even when two different blood sources are present in a mixture. This approach is also suitable for old bloodstains which had been previously chemically enhanced, as experiments conducted on a 9-year-old bloodstain deposited on a ceramic tile demonstrate.
A bottom up in situ proteomic method has been developed enabling the mapping of multiple blood signatures on the intact ridges of blood fingermarks by Matrix Assisted Laser Desorption Mass Spectrometry Imaging (MALDI-MSI). This method, at a proof of concept stage, builds upon recently published work demonstrating the opportunity to profile and identify multiple blood signatures in bloodstains via a bottom up proteomic approach. The present protocol addresses the limitation of the previously developed profiling method with respect to destructivity; destructivity should be avoided for evidence such as blood fingermarks, where the ridge detail must be preserved in order to provide the associative link between the biometric information and the events of bloodshed. Using a blood mark reference model, trypsin concentration and spraying conditions have been optimised within the technical constraints of the depositor eventually employed; the application of MALDI-MSI and Ion Mobility MS have enabled the detection, confirmation and visualisation of blood signatures directly onto the ridge pattern. These results are to be considered a first insight into a method eventually informing investigations (and judicial debates) of violent crimes in which the reliable and non-destructive detection and mapping of blood in fingermarks is paramount to reconstruct the events of bloodshed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.