Infusion of dexmedetomidine, MLK, or DMLK reduced the MAC of isoflurane in dogs.
OBJECTIVE To determine the pharmacokinetic and pharmacodynamic effects of midazolam following IV and IM administration in sheep. ANIMALS 8 healthy adult rams. PROCEDURES Sheep were administered midazolam (0.5 mg/kg) by the IV route and then by the IM route 7 days later in a crossover study. Physiologic and behavioral variables were assessed and blood samples collected for determination of plasma midazolam and 1-hydroxymidazolam (primary midazolam metabolite) concentrations immediately before (baseline) and at predetermined times for 1,440 minutes after midazolam administration. Pharmacokinetic parameters were calculated by compartmental and noncompartmental methods. RESULTS Following IV administration, midazolam was rapidly and extensively distributed and rapidly eliminated; mean ± SD apparent volume of distribution, elimination half-life, clearance, and area under the concentration-time curve were 838 ± 330 mL/kg, 0.79 ± 0.44 hours, 1,272 ± 310 mL/h/kg, and 423 ± 143 h·ng/mL, respectively. Following IM administration, midazolam was rapidly absorbed and bioavailability was high; mean ± SD maximum plasma concentration, time to maximum plasma concentration, area under the concentration-time curve, and bioavailability were 820 ± 268 ng/mL, 0.46 ± 0.26 hours, 1,396 ± 463 h·ng/mL, and 352 ± 148%, respectively. Respiratory rate was transiently decreased from baseline for 15 minutes after IV administration. Times to peak sedation and ataxia after IV administration were less than those after IM administration. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated midazolam was a suitable short-duration sedative for sheep, and IM administration may be a viable alternative when IV administration is not possible.
Pigs are at risk of vomiting from medical conditions as well as the emetic side effects of drugs administered for peri‐operative manipulations, but there is a lack of pharmacokinetic data for potential anti‐emetic therapies, such as maropitant, in this species. The main objective of this study was to estimate plasma pharmacokinetic parameters for maropitant in pigs after a single intramuscular (IM) administration dosed at 1.0 mg/kg. A secondary objective was to estimate pilot pharmacokinetic parameters in pigs after oral (PO) administration at 2.0 mg/kg. Maropitant was administered to six commercial pigs at a dose of 1.0 mg/kg IM. Plasma samples were collected over 72 h. After a 7‐day washout period, two pigs were administered maropitant at a dose of 2.0 mg/kg PO. Maropitant concentrations were measured via liquid chromatography/mass spectrometry (LC–MS/MS). A non‐compartmental analysis was used to derive pharmacokinetics parameters. No adverse events were noted in any of the study pigs after administration. Following single IM administration, maximum plasma concentration was estimated at 412.7 ± 132.0 ng/mL and time to maximum concentration ranged from 0.083 to 1.0 h. Elimination half‐life was estimated at 6.7 ± 1.28 h, and mean residence time was 6.1 ± 1.2 h. Volume of distribution after IM administration was 15.9 L/kg. Area under the curve was 1336 ± 132.0 h*ng/mL. The relative bioavailability of PO administration was noted to be 15.5% and 27.2% in the two pilot pigs. The maximum systemic concentration observed in the study pigs after IM administration was higher than what was observed after subcutaneous administration in dogs, cats, or rabbits. The achieved maximum concentration exceeded the concentrations for anti‐emetic purposes in dogs and cats; however, a specific anti‐emetic concentration is currently not known for pigs. Further research is needed into the pharmacodynamics of maropitant in pigs to determine specific therapeutic strategies for this drug.
The pharmacokinetics of butorphanol after intravenous (IVB) and intramuscular (IMB) administration in donkeys were determined in this preliminary study. Healthy male gelded donkeys (n = 5), aged 6–12 years old, were administered 0.1 mg/kg butorphanol IV or IM in a randomized, crossover design. Blood samples were obtained at predetermined intervals for 24 h (IVB) and 48 h (IMB) after administration. Plasma butorphanol concentrations were determined by high performance liquid chromatography and pharmacokinetic parameters were calculated. Following IVB administration, mean (± SE) apparent volume of distribution, elimination half-life, total body clearance, and area under the plasma concentration time curve from time 0 to infinity (AUC0−∞) were 322 ± 50 mL/kg, 0.83 ± 0.318 h, 400 ± 114 mL/h/kg, 370 ± 131 h·ng/mL, respectively. After IMB administration, a maximum plasma drug concentration of 369 ± 190 ng/mL was reached at 0.48 ± 0.09 h. The IMB AUC0−∞ was 410 ± 60 h·ng/mL. Bioavailability of IMB was 133 ± 45%. The pharmacokinetics of butorphanol in healthy donkeys was characterized by faster elimination half-life compared to values from the equine literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.