Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Macrophages are ubiquitous cells that reside in all major tissues. Counter to long-held beliefs, we now know that resident macrophages in many organs are seeded during embryonic development and self-renew independently from blood monocytes. Under inflammatory conditions, those tissue macrophages are joined and sometimes replaced by recruited monocyte-derived macrophages. Macrophage function in steady state and disease depends on not only their developmental origin but also the tissue environment. Here, we discuss the ontogeny, function, and interplay of tissue-resident and monocyte-derived macrophages in various organs contributing to the development and progression of cardiovascular disease.
The enzymes gelatinase A/matrix metalloproteinase-2 (MMP-2) and gelatinase B/MMP-9 are essential for induction of neuroinflammatory symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS); in the absence of these enzymes, the disease does not develop. We therefore investigated the cellular sources and relative contributions of MMP-2 and MMP-9 to disease at early stages of EAE induction. We demonstrated that MMP-9 from an immune cell source is required in EAE for initial infiltration of leukocytes into the central nervous system and that MMP-9 activity is a reliable marker of leukocyte penetration of the blood-brain barrier. We then developed a molecular imaging method to visualize MMP activity in the brain using fluorescent- and radioactive-labeled MMP inhibitors (MMPis) in EAE animals and used the radioactive MMP ligand for positron emission tomography (PET) imaging of MMP activity in patients with MS. In contrast to traditional T1-gadolinium contrast-enhanced MRI, MMPi-PET enabled tracking of MMP activity as a unique feature of early lesions and ongoing leukocyte infiltration. MMPi-PET therefore allows monitoring of the early steps of MS development and provides a sensitive, noninvasive means of following lesion formation and resolution in murine EAE and human MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.