E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness is conferred by cadherin extracellular domains, and is regulated by an assembly of adaptors and enzymes associated with the cytoplasmic tail. Here, we employed proximity biotinylation and quantitative proteomics to isolate and identify 612 proteins in the vicinity of E-cadherin's cytoplasmic tail. We used a structureinformed database of protein-protein interactions to construct the most comprehensive E-cadherin interactome to date, containing 89 known E-cadhesome components and 346 novel proteins. Moreover, through cloning and expression of GFP-tagged fusion proteins we localized 26 of the novel proteins to adherens junctions. Finally, employing calcium depletion and myosin inhibition we show the E-cadherin interactome to be remarkably robust to perturbation and essentially independent of cell-cell junctions or actomyosin contractility.
Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness‐induced CCN1 activates β‐catenin nuclear translocation and signaling and that this contributes to upregulate N‐cadherin levels on the surface of the endothelium, in vitro. This facilitates N‐cadherin‐dependent cancer cell–endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness‐induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.
The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion.
Background: Minichromosome maintenance (Mcm) proteins are essential for eukaryotic DNA replication, and their expression implies potential for cell proliferation. Expression is dysregulated in dysplastic states but data for oesophageal squamous mucosa and Barrett's mucosa have not been published. Aim: To test the hypothesis that Mcm proteins are downregulated together with the proliferation marker Ki-67 in differentiating epithelial compartments of non-dysplastic squamous and Barrett's epithelium, and that this process does not occur in dysplastic mucosae. Methods and cases: Forty five patients with Barrett's oesophagus included 20 with glandular dysplasia (10 low grade, eight high grade, two both, and four with invasive adenocarcinoma). Twenty five other patients included 12 with oesophageal squamous dysplasia (three low grade, six high grade, three both, and four with invasive squamous carcinoma). Formalin fixed paraffin embedded tissue sections from biopsy series and resections were immunostained using antibodies to Mcm2, Mcm5, and Ki-67. Percentage of nuclei positive for Mcm2, Mcm5, and Ki-67 was estimated and scored from 0 to 6 as: 0, none +; 1, <10%+; 2, 10-30%+; 3, 30-70%+; 4, 70-90%+; 5, >90%+; 6, all+. Four separate epithelial strata were scored: in squamous epithelium the basal layer and thirds to the surface, in Barrett's mucosa the luminal surface, upper and lower crypt, and deep glands. Results: In non-dysplastic squamous epithelium and Barrett's mucosa, high level expression of Mcm2, Mcm5, and Ki-67 proteins was largely confined to the proliferative compartments and downregulated in differentiated compartments. Expression persisted up to the mucosal surface in dysplastic squamous epithelium and Barrett's mucosa. Conclusions: Persistent expression of Mcm2, Mcm5, and Ki-67 proteins in luminal compartments of dysplastic oesophageal squamous epithelium and dysplastic Barrett's mucosa may be diagnostic markers and imply disruption of cell cycle control and differentiation in these dysplastic epithelia.
Exploiting oxidative stress has recently emerged as a plausible strategy for treatment of human cancer, and antioxidant defenses are implicated in resistance to chemotherapy and radiotherapy. Targeted suppression of antioxidant defenses could thus broadly improve therapeutic outcomes. Here, we identify the AMPK-related kinase NUAK1 as a key component of the antioxidant stress response pathway and reveal a specific requirement for this role of NUAK1 in colorectal cancer. We show that NUAK1 is activated by oxidative stress and that this activation is required to facilitate nuclear import of the antioxidant master regulator NRF2: Activation of NUAK1 coordinates PP1β inhibition with AKT activation in order to suppress GSK3β-dependent inhibition of NRF2 nuclear import. Deletion of NUAK1 suppresses formation of colorectal tumors, whereas acute depletion of NUAK1 induces regression of preexisting autochthonous tumors. Importantly, elevated expression of NUAK1 in human colorectal cancer is associated with more aggressive disease and reduced overall survival. This work identifies NUAK1 as a key facilitator of the adaptive antioxidant response that is associated with aggressive disease and worse outcome in human colorectal cancer. Our data suggest that transient NUAK1 inhibition may provide a safe and effective means for treatment of human colorectal cancer via disruption of intrinsic antioxidant defenses. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.