The BCL-2-specific inhibitor, ABT-199 (venetoclax) has exhibited remarkable clinical activity in nearly all cases of chronic lymphocytic leukemia. In contrast, responses are usually much less in diffuse large B-cell lymphoma (DLBCL), despite high level expression of BCL-2 in over 40% of cases, indicating that co-expression of related anti-apoptotic BCL-2 family proteins may limit the activity of ABT-199. We have investigated the roles of BCL-2 proteins in DLBCL cells using a panel of specific BCL-2 homology 3 (BH3)-mimetics and identified subgroups of these cells that exhibited marked and specific dependency on either BCL-2, BCL-X
L
or MCL-1 for survival. Dependency was associated with selective sequestration of the pro-apoptotic proteins BIM, BAX and BAK by the specific anti-apoptotic BCL-2 protein which was important for cellular survival. Sensitivity to BH3-mimetics was independent of genetic alterations involving the BCL-2 family and only partially correlated with protein expression levels. Treatment with ABT-199 displaced BAX and BIM from BCL-2, subsequently leading to BAK activation and apoptosis. In contrast, apoptosis induced by inhibiting BCL-X
L
with A1331852 was associated with a displacement of both BAX and BAK from BCL-X
L
and occurred independently of BIM. Finally, the MCL-1 inhibitor S63845 induced mainly BAX-dependent apoptosis mediated by a displacement of BAK, BIM and NOXA from MCL-1. In conclusion, our study indicates that in DLBCL, the heterogeneous response to BH3-mimetics is mediated by selective interactions between BAX, BAK and anti-apoptotic BCL-2 proteins.
Interferons (IFNs) are key players in the tumor immune response and act by inducing the expression of IFN-stimulated genes (ISGs). Here, we identify the mixed-lineage kinase domain-like pseudokinase (MLKL) as an ISG in various cancer cell lines. Both type I and type II IFNs increase the expression of MLKL indicating that MLKL up-regulation is a general feature of IFN signaling. IFNγ up-regulates mRNA as well as protein levels of MLKL demonstrating that IFNγ transcriptionally regulates MLKL. This notion is further supported by Actinomycin D chase experiments showing that IFNγ-stimulated up-regulation of MLKL is prevented in the presence of the transcriptional inhibitor Actinomycin D. Also, knockdown of the transcription factor IFN-regulatory factor 1 (IRF1) and signal transducer and activator of transcription (STAT) 1 as well as knockout of IRF1 significantly attenuate IFNγ-mediated induction of MLKL mRNA levels. Up-regulation of MLKL by IFNγ provides a valuable tool to sensitize cells towards necroptotic cell death and to overcome apoptosis resistance of cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.