In this study, the lead isotope signature was tested with the aim to verify its potential as geographic tracer for wine production and particularly for the Lambrusco PDO wines of the province of Modena (Italy). A solid phase extraction procedure, for separating lead from the investigated matrices, soil and wine, was optimized. Furthermore, different mathematical models, based on an exponential law and internal or external correction approach, were evaluated for the correction of instrumental mass dependent fractionation. The optimized analytical procedure yielded isotopic ratio data relative to the lead NIST 981 standard, 208Pb/206Pb = 2.16664 and 207Pb/206Pb = 0.914645, in good agreement both with the tabulated values and with the most recent literature data. Measured isotope ratio data highlight the contribute of multiple lead sources in bottled wine but different from the one present in soils.
This study summarizes the results obtained from a systematic and long-term project aimed at the development of tools to assess the provenance of food in the oenological sector. 87Sr/86Sr isotope ratios were measured on a representative set of soils, branches, and wines sampled from the Chianti Classico wine production area. In particular, owing to the high spatial resolution of the 87Sr/86Sr ratio in the topsoil, the effect of two mill techniques for soil pretreatment was investigated to verify the influence of the particle dimension on the measured isotopic ratios. Samples with particle sizes ranging from 250 to less than 50 µm were investigated, and the extraction was performed by means of the DIN 19730 procedure. For each sample, the Sr isotope ratio was determined as well. The obtained results showed that the 87Sr/86Sr ratio is not influenced by soil particle size and may represent an effective tool as a geographic provenance indicator for the investigated product.
The metal content in some samples of horse chestnut seeds (Aesculus hippocastanum) was monitored over time (years 2016–2019) considering the two most common and representative Mediterranean varieties: the pure species (AHP, which gives white flowers) and a hybrid one (AHH, which gives pink flowers). The selected elemental composition of the samples was determined by applying the Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) technique. Several samples obtained from different preliminary treatments of the peeled seeds were examined, such as: (i) floury samples (wild-type) mineralized with the wet method; (ii) the ashes of both AHP and AHH varieties; (iii) the fraction of total inorganic soluble salts (TISS). Furthermore, the hydroalcoholic crude extracts (as a tincture) were obtained according to the official Pharmacopoeia methods, and the relevant results were compared with those of a commercial sample, an herbal product-food supplement of similar characteristics. The main characteristics of this research work underline that the two botanical varieties give different distinctive characters, due to the Fe content (80.05 vs. 1.42 mg/100 g d.s., for AHP and AHH wild-type flour samples, respectively), along with K, Ca, Mn, Ni and Cu, which are more abundant in the AHP samples. Furthermore, the Principal Component Analysis (PCA) was applied to the experimental dataset in order to classify and discriminate the samples, in relation to their similar botanical origin, but different for the color of the bloom. These results can be useful for the traceability of raw materials potentially intended for the production of auxiliary systems of pharmacological interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.