Regulation of protein synthesis by eukaryotic initiation factor-2alpha (eIF-2alpha) phosphorylation is a highly conserved phenomenon in eukaryotes that occurs in response to various stress conditions. Protein kinases capable of phosphorylating eIF-2alpha have been characterized from mammals and yeast. However, the phenomenon of eIF2-alpha-mediated regulation of protein synthesis and the presence of an eIF-2alpha kinase has not been demonstrated in higher plants. We show that plant eIF-2alpha (peIF-2alpha) and mammalian eIF-2alpha (meIF-2alpha) are phosphorylated similarly by both the double-stranded RNA-binding kinase, pPKR, present in plant ribosome salt wash fractions and the meIF-2alpha kinase, PKR. By several criteria, phosphorylation of peIF-2alpha is directly correlated with pPKR protein and autophosphorylation levels. Significantly, pPKR is capable of specifically phosphorylating Ser51 in a synthetic eIF-2alpha peptide, a key characteristic of the eIF-2alpha kinase family. Taken together, these data support the concept that pPKR is a member of the eIF-2alpha kinase family. In addition, the inhibition of brome mosaic virus RNA in vitro translation in wheat germ lysates by the addition of double-stranded RNA, phosphorylated peIF-2alpha, meIF-2alpha, or activated human PKR suggests that plant protein synthesis may be regulated via phosphorylation of eIF-2alpha.
An inhibitor of eIF-2a phosphorylation was identified in various plant species. The plant protein (termed PKI) specifically cross-reacts with monoclonal antiserum that recognizes the glycosylated, active form of a M(r) 87 kD protein analog (p67) from reticulocytes. Northern blot analysis using a probe to the reticulocyte inhibitor cDNA further supports the presence of analogous transcripts in plant tissue. PKI specifically inhibits the phosphorylation of the plant encoded eIF-2 alpha kinase (pPKR) as well as plant and human eIF-2 alpha phosphorylation. The interaction between PKI and pPKR is indicated by their copurification on dsRNA agarose, despite evidence showing that PKI does not bind dsRNA. Further, wheat PKI inhibits human PKR phosphorylation but activity is recovered by immuno-depletion of PKI from wheat germ fractions. PKI is temporally regulated during plant growth and development. It is maximally present in extracts from dormant seeds, however, it is not detectable soon after leaf emergence at approximately 48 h post-imbibition. PKI levels are again detectable at the mid-milk stage in seed development. Protein levels of pPKR in ribosomal salt wash and cytosolic extracts from healthy plant tissue remain essentially constant throughout the life cycle. In contrast, pPKR activity levels based upon autophosphorylation vary significantly and are inversely correlated with PKI protein levels. Phosphorylation of eIF-2 alpha is a classical mechanism for the downregulation of protein synthesis suggesting that inhibition of pPKR activity by PKI may contribute to the dramatic and rapid increase in protein synthesis observed during seed germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.