Structural insights have been provided by mercury-199 nuclear magnetic resonance (NMR) into the metal receptor site of the MerR metalloregulatory protein alone and in a complex with the regulatory target, DNA. The one- and two-dimensional NMR data are consistent with a trigonal planar Hg-thiolate coordination environment consisting only of Cys side chains and resolve structural aspects of both metal ion recognition and the allosteric mechanism. These studies establish 199Hg NMR techniques as useful probes of the metal coordination environment of regulatory proteins, copper enzymes, and zinc transcription factor complexes as large as 50 kilodaltons.
Efficient charge separation occurring within membrane-bound reaction center proteins is the most important step of photosynthetic solar energy conversion. All reaction centers are classified into two types, I and II. X-ray crystal structures reveal that both types bind two symmetric membrane-spanning branches of potential electron-transfer cofactors. Determination of the functional roles of these pairs of branches is of fundamental importance. While it is established that in type II reaction centers only one branch functions in electron transfer, we present the first direct spectroscopic evidence that both cofactor branches are active in the type I reaction center, photosystem I.
Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature's specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.
Electron spin polarized electron paramagentic resonance (ESP EPR) spectra were obtained with deuterated iron-removed photosynthetic bacterial reaction centers (RCs) to specifically investigate the effect of the rate of primary charge separation, metal-site occupancy, and H-subunit content on the observed P865+QA- charge-separated state. Fe-removed and Zn-substituted RCs from Rb. sphaeroides R-26 were prepared by refined procedures, and specific electron transfer rates (kQ) from the intermediate acceptor H- to the primary acceptor QA of (200 ps)-1 vs (3-6 ns)-1 were observed. Correlation of the transient EPR and optical results shows that the observed slow kQ rate in Fe-removed RCs is H-subunit-independent, and, in some cases, independent of Fe-site occupancy as Zn2+ substitution does not ensure retention of the native kQ. In addition, shifts in the optical spectrum of P865 and differences in the high-field region of the Q-band ESP spectrum for Fe-removed RCs with slow kQ indicate possible structural changes near P865. The experimental X-band and Q-band spin-polarized EPR spectra for deuterated Fe-removed RCs where kQ is at least 15-fold slower at room temperature than the (200 ps)-1 rate observed for native Fe-containing RCs have different relative amplitudes and small g-value shifts compared to the spectra of Zn-RCs which have a kQ unchanged from native RCs. These differences reflect the trends in polarization predicted from the sequential electron transfer polarization (SETP) model [Morris et al. (1995) J. Phys. Chem. 99, 3854-3866; Tang et al. (1996) Chem. Phys. Lett. 253, 293-298]. Thus, SETP modeling of these highly resolved ESP spectra obtained with well-characterized proteins will provide definitive information about any light-induced structural changes of P865, H, and QA that occur upon formation of the P865+QA- charge-separated state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.