The inhibition potential of drugs towards five major human hepatic cytochrome P450 (CYP) isozymes (CYP2A6, 3A4, 2C9, 2D6, and 2E1) was investigated via cassette dosing of the five probe substrates (coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) in human liver microsomes using a 96-well plate format. After microsomal incubations had been terminated with formic acid, the five marker metabolites (7-hydroxycoumarin, 1'-hydroxymidazolam, 4-hydroxytolbutamide, dextrorphan, and 6-hydroxychlorzoxazone) were simultaneously quantified using direct injection/online guard cartridge extraction/tandem mass spectrometry (DI-GCE/MS/MS). Several advantages resulted from the use of a short C(18) guard cartridge (4 mm in length) for DI-GCE/MS/MS, including minimal sample preparation, fast online extraction, short analysis time (2.5 min), and minimal source contamination. In addition, this method demonstrated an inter-day accuracy range from -8.7 - 7.4% with a precision less than 8.3% for the quantification of all the marker metabolites. The inhibition assay for the five CYP isozymes was evaluated using their known selective inhibitors via individual and cassette dosing of the probe substrates. The IC(50) values measured via cassette dosing were consistent with those observed via individual dosing, which were all in agreement with the reported values. In addition, the validated assay was used to evaluate the inhibitory potential of 23 generic drugs (randomly selected) towards the five CYP isozymes. The results suggest the integration of the cassette dosing strategy and the DI-GCE/MS/MS method can provide a reliable in vitro approach to screening the inhibitory potential of new chemical entities, with maximal throughput and cost-effectiveness, in support of drug discovery and development.
In vitro metabolic stability experiments using microsomes or other liver preparations are important components in the discovery and lead-optimization stages of compound selection in the pharmaceutical industry. Currently, liquid chromatography-tandem mass spectrometric (LC-MS/MS) support of in vitro metabolic stability studies primarily involves the monitoring of disappearance of parent compounds, using selected reaction monitoring (SRM) on triple-quadrupole instruments. If moderate to high turnover is observed, separate metabolite identification experiments are then conducted to characterize the biotransformation products. In this paper, we present a novel method to simultaneously perform metabolite screening in addition to the quantitative stability measurements, both within the same chromatographic run. This is accomplished by combining SRM and SRM-triggered, information-dependent acquisition (IDA) of MS/MS spectra on a hybrid triple-quadrupole linear ion trap (QqQLIT) mass spectrometer. Microsomal stability experiments using model compounds, bufuralol, propranolol, imipramine, midazolam, verapamil and diclofenac, were used to demonstrate the applicability of our approach. This SRM + SRM-IDA approach generated metabolic stability results similar to those obtained by conventional SRM-only approach. In addition, MS/MS spectra from potential metabolites were obtained with the enhanced product ion (EPI) scan function of LIT during the same injection. These spectra were correlated to the spectra of parent compounds to confirm the postulated structures. The time-concentration profiles of identified metabolites were also estimated from the acquired data. This approach has been successfully used to support discovery programs.
Ultrafast liquid chromatography/tandem mass spectrometry (LC/MS/MS) bioanalysis was demonstrated with the use of packed silica columns operated under elevated flow rates. A special effort has been made to achieve ultrafast analysis without sacrificing chromatographic resolution. Two multiple analyte/metabolites assays, (1) morphine/morphine-6-glucuronide(M6G)/morphine-3-glucuronide(M3G) and (2) midazolam/1'-hydroxymidazolam/4-hydroxymidazolam, were used to demonstrate the speed, sensitivity, peak shape and separation of the ultrafast methods utilizing silica columns. In both methods adequate chromatographic separation was a necessity because quantitation results would be otherwise compromised due to cross interference between different selected reaction monitoring (SRM) transitions. Baseline resolutions between morphine, M6G and M3G in human plasma extracts were achieved within 30 s on a 50 x 3 mm Betasil silica column operated at 4 mL/min of isocratic acetonitrile/water mobile phase. The total injection-to-injection cycle time was 48 s with a simple, single-autosampler/single-column setup, when a Shimadzu SIL-HT autosampler was used. Baseline resolution between 1'-hydroxymidazolam and 4-hydroxymidalolam in monkey plasma extracts was achieved within 33 s using similar conditions. Due to the absence of carry-over in this case, no rinsing of the injection needle was necessary, resulting in a cycle time of only 39 s/sample. These ultrafast methods were successfully used to analyze extracted biological samples and proved to be reproducible, reliable and generated equivalent pharmaco-kinetic (PK) results to those obtained by regular flow LC/MS/MS analysis to support discovery PK studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.