Bioanalytical support of plasma pharmacokinetic (PK) studies for drug discovery programs primarily involves the quantitative analysis of dosed compounds using liquid chromatography/atmospheric pressure ionization tandem mass spectrometry (LC/MS/MS) operated in selected reaction monitoring (SRM) mode. However, there is a growing need for information on the metabolism of new chemical entities (NCEs), in addition to the time-concentration profiles from these studies. In this paper, we present a novel approach to not only quantify parent drugs with SRM, but also simultaneously screen for metabolites using a hybrid triple quadrupole/linear ion trap (QqQ(LIT)) instrument. This was achieved by incorporating both the conventional SRM-only acquisition of parent compounds and the SRM-triggered information-dependent acquisition (IDA) of potential metabolites within the same scan cycle during the same LC/MS/MS run. Two test compounds were used to demonstrate the applicability of this approach. Plasma samples from PK studies were processed by simple protein precipitation and the supernatant was diluted with water before injection. The fast scanning capability of the linear ion trap allowed for the information-dependent acquisition of metabolite MS/MS spectra (<1 s/scan), in addition to the collection of adequate data points for SRM-only channels. The MS/MS spectra obtained from potential metabolites in post-dose samples correlated well with the spectra of the parent compounds studied, therefore providing additional confirmatory structure information without the need for repetitive analyses. Relative quantitative time-concentration profiles of identified metabolites were also obtained. Furthermore, this articulated SRM+SRM-IDA approach generated equivalent quantitative results for parent compounds to those obtained by conventional SRM-only analysis. This approach has been successfully used to support discovery PK screening programs.
Isoniazid and cetirizine do not retain well on reversed-phase columns due to their high polarity. Silica columns, when operated under hydrophilic interaction conditions, do provide excellent retention of these compounds. We have developed simple and proof of concept analytical methods for the analysis of isoniazid and cetirizine in animal and human plasma, respectively. Both methods employed the approach of direct injection of solid-phase extraction (SPE) organic eluents onto silica columns for analysis, thus eliminating evaporation and reconstitution steps that are typically needed for reversed-phase liquid chromatographic analysis. Isoniazid was extracted from animal plasma samples using a Waters Oasis HLB 96-well plate and then eluted with acetonitrile, while cetirizine was extracted from human plasma with a Waters MCX mu-Elute plate and then eluted with acetonitrile containing 5% concentrated ammonium hydroxide. The direct injection of the SPE eluent onto the analytical column was necessary since significant loss of isoniazid was found during the evaporation and reconstitution steps. The method for isoniazid also enabled ultra-fast analysis due to the relatively low back-pressure exhibited by silica columns even under high flow conditions. Both methods show good linearity, accuracy and precision covering the range of 10-2000 ng/mL of isoniazid, and 1-1000 ng/mL of cetirizine in plasma. Substantial time savings were realized as a result of both the elimination of the evaporation and reconstitution steps and the fast chromatographic analysis.
In vitro metabolic stability experiments using microsomes or other liver preparations are important components in the discovery and lead-optimization stages of compound selection in the pharmaceutical industry. Currently, liquid chromatography-tandem mass spectrometric (LC-MS/MS) support of in vitro metabolic stability studies primarily involves the monitoring of disappearance of parent compounds, using selected reaction monitoring (SRM) on triple-quadrupole instruments. If moderate to high turnover is observed, separate metabolite identification experiments are then conducted to characterize the biotransformation products. In this paper, we present a novel method to simultaneously perform metabolite screening in addition to the quantitative stability measurements, both within the same chromatographic run. This is accomplished by combining SRM and SRM-triggered, information-dependent acquisition (IDA) of MS/MS spectra on a hybrid triple-quadrupole linear ion trap (QqQLIT) mass spectrometer. Microsomal stability experiments using model compounds, bufuralol, propranolol, imipramine, midazolam, verapamil and diclofenac, were used to demonstrate the applicability of our approach. This SRM + SRM-IDA approach generated metabolic stability results similar to those obtained by conventional SRM-only approach. In addition, MS/MS spectra from potential metabolites were obtained with the enhanced product ion (EPI) scan function of LIT during the same injection. These spectra were correlated to the spectra of parent compounds to confirm the postulated structures. The time-concentration profiles of identified metabolites were also estimated from the acquired data. This approach has been successfully used to support discovery programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.