The field of gene therapy has been galvanized by the discovery of the highly efficient and adaptable site-specific nuclease system CRISPR/Cas9 from bacteria. 1,2 Immunity against therapeutic gene vectors or gene-modifying cargo nullifies the effect of a possible curative treatment and may pose significant safety issues. [3][4][5] Immunocompetent mice treated with CRISPR/Cas9-encoding vectors exhibit humoral and cellular immune responses against the Cas9 protein, that impact the efficacy of treatment and can cause tissue damage. 5,6 Most applications aim to temporarily express the Cas9 nuclease in or deliver the protein directly into the target cell. Thus, a putative humoral antibody response may be negligible. 5 However, intracellular protein degradation processes lead to peptide presentation of Cas9 fragments on the cellular surface of gene-edited cells that may be recognized by T cells. While a primary T cell response could be prevented or delayed, a pre-existing memory would have major impact.Here, we show the presence of a ubiquitous memory/effector T cell response directed towards the most popular Cas9 homolog from Streptococcus pyogenes (SpCas9) within healthy human subjects. We have characterized SpCas9-reactive memory/effector T cells (TEFF) within the CD4/CD8 compartments for multi-effector potency and lineage determination. Intriguingly, SpCas9-specific regulatory T cells (TREG) profoundly contribute to the pre-existing SpCas9directed T cell immunity. The frequency of SpCas9-reactive TREG cells inversely correlates with the magnitude of the respective TEFF response. SpCas9-specific TREG may be harnessed to ensure the success of SpCas9-mediated gene therapy by combating undesired TEFF response in vivo. Furthermore, the equilibrium of Cas9-specific TEFF and TREG cells may have greater importance in Streptococcus pyogenes-associated diseases. Our results shed light on the T cell mediated immunity towards the much-praised gene scissor SpCas9 and offer a possible solution to overcome the problem of pre-existing immunity. TextSpCas9 was the first Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated nuclease hijacked to introduce DNA double-strand breaks at specific DNA sequences. 1 Through the ease of target adaption and the remarkable efficacy, it advanced to the most popular tool for re-writing genes in research and potential clinical applications. The major concern for clinical translation of CRISPR/Cas9 technology is the risk for off-target activity causing potentially harmful mutations or chromosomal aberrations. 2,7 High-fidelity Cas9 enzymes were developed to reduce the probability of these events. 8 Furthermore, novel Cas9-based fusion proteins allow base editing or specific epigenetic reprogramming without inducing breaks in the DNA. 9,10 Most approaches are based on the original SpCas9 enzyme that originates in the facultatively
With increasing age, the risk of bone fractures increases while regenerative capacity decreases. This variation in healing potential appears to be linked to adaptive immunity, but the underlying mechanism is still unknown. This study sheds light on immunoaging/inflammaging, which impacts regenerative processes in aging individuals. In an aged preclinical model system, different levels of immunoaging were analyzed to identify key factors that connect immunoaged/inflammaged conditions with bone formation after long bone fracture. Immunological facets, progenitor cells, the microbiome, and confounders were monitored locally at the injury site and systemically in relation to healing outcomes in 12-month-old mice with distinct individual levels of immunoaging. Bone tissue formation during healing was delayed in the immunoaged group and could be associated with significant changes in cytokine levels. A prolonged and amplified pro-inflammatory reaction was caused by upregulated immune cell activation markers, increased chemokine receptor availability and a lack of inhibitory signaling. In immunoaged mice, interleukin-22 was identified as a core cell signaling protein that played a central role in delayed healing. Therapeutic neutralization of IL-22 reversed this specific immunoaging-related disturbed healing. Immunoaging was found to be an influencing factor of decreased regenerative capacity in aged individuals. Furthermore, a novel therapeutic strategy of neutralizing IL-22 may successfully rejuvenate healing in individuals with advanced immune experiences.
Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.