Background: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. Methods: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. Findings: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. Interpretation: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms.
To date, no comprehensive analysis of autoantibodies in sera of patients with ulcerative colitis has been conducted. To analyze the spectrum of autoantibodies and to elucidate their role serum-IgG from UC patients (n = 49) and non-UC donors (n = 23) were screened by using a human protein microarray. Screening yielded a remarkable number of 697 differentially-reactive at the nominal 0�01 significance level (FDR<0�1) of the univariate test between the UC and the non-UC group. CD99 emerged as a biomarker to discriminate between both groups (p = 1e-04, AUC = 0�8). In addition, cytokines, chemokines and growth factors were analyzed by Olink's Proseek® Multiplex Inflammation-I 96×96 immuno-qPCR assay and 31 genes were significant at the nominal 0.05 level of the univariate test to discriminate between UC and non-UC donors. MCP-3, HGF and CXCL-9 were identified as the most significant markers to discriminate between UC patients with clinically active and inactive disease. Levels of CXCL10 (cor = 0.3; p = 0.02), CCL25 (cor = 0.25; p = 0.04) and CCL28 (cor = 0.3; p = 0.02) correlated positively with levels of anti CD99. To assess whether autoantibodies are detectable prior to diagnosis with UC, sera from nine donors at two different time points (T-early, median 21 months and T-late, median 6 months) were analyzed. 1201 features were identified with higher reactivity in samples at time points closer to clinical UC presentation. In vitro, additional challenge of peripheral mononuclear cells with CD99 did not activate CD4+ T cells but induced the secretion of IL-10 (-CD99: 20.21±20.25; +CD99: 130.20±89.55; mean ±sd; p = 0.015). To examine the effect of CD99 in vivo, inflammation and autoantibody levels were examined in NOD/ScidIL2Rγ null mice reconstituted with PBMC from UC donors (NSG-UC). Additional challenge with CD99 aggravated disease symptoms and pathological phenotype as indicated by the elevated clinical score (-CD99: 1�85 ± 1�94; +CD99: 4�25 ± 1�48) and histological score (-CD99: 2�16 ± 0�83; +CD99: 3�15 ± 1�16, p = 0�01). Furthermore, levels of anti-CD99 antibodies increased (Control: 398 ± 323; mean MFI ± sd; Ethanol + PBS: 358 ±316; Ethanol + CD99: 1363 ± 1336; Control versus PLOS ONE | https://doi.Ethanol + CD99: p = 0.03). In a highly inflammatory environment, frequencies of pro-inflammatory M1 monocytes (CD14+ CD64+: unchallenged 8.09±4.72; challenged 14.2±8.62; p = 0.07; CD14+ CD1a+: unchallenged 16.29 ±6.97; challenged 43.81±14.4, p = 0.0003) increased and levels of autoantibodies in serum decreased in the NSG-UC mouse model. These results suggest that autoantibodies are potent biomarkers to discriminate between UC and non-UC and indicate risk to develop UC. In an inflammatory environment, auto-antibodies may promote the pathological phenotype by activating M1 monocytes in the NSG-UC animal model and also in patients with UC.
Although an increased level of the prostate-specific antigen can be an indication for prostate cancer, other reasons often lead to a high rate of false positive results. Therefore, an additional serological screening of autoantibodies in patients’ sera could improve the detection of prostate cancer. We performed protein macroarray screening with sera from 49 prostate cancer patients, 70 patients with benign prostatic hyperplasia and 28 healthy controls and compared the autoimmune response in those groups. We were able to distinguish prostate cancer patients from normal controls with an accuracy of 83.2%, patients with benign prostatic hyperplasia from normal controls with an accuracy of 86.0% and prostate cancer patients from patients with benign prostatic hyperplasia with an accuracy of 70.3%. Combining seroreactivity pattern with a PSA level of higher than 4.0 ng/ml this classification could be improved to an accuracy of 84.1%. For selected proteins we were able to confirm the differential expression by using luminex on 84 samples. We provide a minimally invasive serological method to reduce false positive results in detection of prostate cancer and according to PSA screening to distinguish men with prostate cancer from men with benign prostatic hyperplasia.
Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection. While first-generation antibody tests have primarily provided qualitative results with low specificity, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. Here, we describe two quantitative ELISA antibody tests based on the SARS-CoV-2 spike receptor-binding domain and the nucleocapsid protein. Comparative expression in bacterial, insect, mammalian and plant-based platforms enabled the identification of new antigen designs with superior quality and high suitability as diagnostic reagents. Both tests scored excellently in clinical validations with multi-centric specificity and sensitivity cohorts and showed unprecedented correlation with SARS-CoV-2 neutralization titers. Orthogonal testing increased assay specificity to 99.8%, thereby enabling robust serodiagnosis in low-prevalence settings. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19.
For the identification of antigenic protein biomarkers for rheumatoid arthritis (RA), we conducted IgG profiling on high density protein microarrays. Plasma IgG of 96 human samples (healthy controls, osteoarthritis, seropositive and seronegative RA, n = 24 each) and time-series plasma of a pristane-induced arthritis (PIA) rat model (n = 24 total) were probed on AIT’s 16k protein microarray. To investigate the analogy of underlying disease pathways, differential reactivity analysis was conducted. A total of n = 602 differentially reactive antigens (DIRAGs) at a significance cutoff of p < 0.05 were identified between seropositive and seronegative RA for the human samples. Correlation with the clinical disease activity index revealed an inverse correlation of antibodies against self-proteins found in pathways relevant for antigen presentation and immune regulation. The PIA model showed n = 1291 significant DIRAGs within acute disease. Significant DIRAGs for (I) seropositive, (II) seronegative and (III) PIA were subjected to the Reactome pathway browser which also revealed pathways relevant for antigen presentation and immune regulation; of these, seven overlapping pathways had high significance. We therefore conclude that the PIA model reflects the biological similarities of the disease pathogenesis. Our data show that protein array analysis can elucidate biological differences and pathways relevant in disease as well be a useful additional layer of omics information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.