We report the experimental evidence of a new form of room-temperature ferromagnetism in high surface area nanocrystalline manganese-doped In2O3, prepared from colloidal nanocrystals as building blocks. The nanocrystal structure (bixbyite or corundum) and assembly were controlled by their size, and the type and concentration of dopant precursors. The existence of substitutional paramagnetic Mn dopant ions in mixed valence states (Mn(2+) and Mn(3+)) was confirmed and quantified by different spectroscopic methods, including X-ray absorption and magnetic circular dichroism. The presence of different oxidation states is the basis of ferromagnetism induced by Stoner splitting of the local density of states associated with extended structural defects, due to charge transfer from the Mn dopants. The extent of this charge transfer can be controlled by the relationship between the electronic structures of the nanocrystal host lattice and dopant ions, rendering a higher magnetic moment in bixbyite relative to corundum Mn-doped In2O3. Charge-transfer ferromagnetism assumes no essential role of dopant as a carrier of the magnetic moment, which was directly confirmed by X-ray magnetic circular dichroism, as an element-specific probe of the origin of ferromagnetism. At doping concentrations approaching the percolation limit, charge-transfer ferromagnetism can switch to a double exchange mechanism, given the mixed oxidation states of Mn dopants. The results of this work enable the investigations of the new mechanisms of magnetic ordering in solid state and contribute to the design of new unconventional magnetic and multifunctional materials.
Introducing multiple luminescent centers into colloidal nanocrystals is an attractive way to impart new optical properties into this class of materials. Doping disparate ions into specific nanocrystals is often challenging, due to the preferential incorporation of one type of dopant. Here, we demonstrate the coexistence of europium dopants as divalent and trivalent ions in colloidal Ga 2 O 3 nanocrystals, achieved by controlled in situ reduction of Eu 3+ to Eu 2+ . The two dopant species exhibit distinctly different steady-state and time-resolved photoluminescence, and their ratio can be modified via doping concentration, reaction temperature, or thermal treatment of as-synthesized NCs. The Eu 2+ ions are proposed to be stabilized internally owing to the attractive interaction with oxygen vacancies, while Eu 3+ dopants partly reside in the nanocrystal surface region. The relationship between the electronic structure of the native defects and the dopant centers is discussed in the context of the overall emission properties. The exposure of these samples to X-ray radiation leads to the reduction of Eu 3+ to Eu 2+ , demonstrating an alternative way of manipulating the oxidation state and suggesting the potential application of this material as an X-ray storage phosphor. The coexistence of Eu 2+ and Eu 3+ and the ability to control their relative fraction over the full oxidation state range in group III oxide nanocrystals allow for the design and preparation of new photonic and light emitting materials.
Investigation of the origin of high-Curie temperature ferromagnetism in diluted magnetic oxides has become one of the focal points of research on solid-state magnetism. While several possible mechanisms have been proposed theoretically, broader experimental evidence is still lacking. Here we report a comparative study of the electronic structure and magnetic properties of colloidal Fe-doped In2O3 and SnO2 nanocrystals, as building blocks for grain-boundary-rich diluted magnetic oxide films. The dopant ions in both nanocrystal host lattices are principally in 3+ oxidation state, with possibly a minor presence of Fe2+ in In2O3, and no conclusive evidence of the presence of Fe2+ in SnO2 nanocrystals. Subsequently, we found that Fe-doped In2O3 nanocrystalline films exhibit only minor ferromagnetic ordering (with a magnetic moment of less than ca. 0.1 μB/Fe) and decreasing saturation magnetization with increasing doping concentration at room temperature. The saturation magnetic moment of Fe-doped SnO2 nanocrystalline films is insignificant or below the detection limit. These results contrast previous findings for analogous Mn-doped nanocrystals, which contain mixed oxidation states (Mn2+ and Mn3+) and exhibit a robust ferromagnetism at room temperature. The correlation between the mixed dopant oxidation states and the observed magnetic properties implies that ferromagnetism in these systems is of a Stoner type, enabled by electron transfer between dopant ions and the local defect states arising from the grain boundaries within a nanocrystalline film. These results suggest the prospect of probing and manipulating ferromagnetism in nonmagnetic oxides by simultaneous control of the transition metal dopant oxidation states and extended structural defects.
Controlling the crystal structure of transparent metal oxides is essential for tailoring the properties of these polymorphic materials to specific applications. The structural control is usually done via solid state phase transformation at high temperature or pressure. Here, we report the kinetic study of in situ phase transformation of In2O3 nanocrystals from metastable rhombohedral phase to stable cubic phase during their colloidal synthesis. By examining the phase content as a function of time using the model fitting approach, we identified two distinct coexisting mechanisms, surface and interface nucleation. It is shown that the mechanism of phase transformation can be controlled systematically through modulation of temperature and precursor to solvent ratio. The increase in both of these parameters leads to gradual change from surface to interface nucleation, which is associated with the increased probability of nanocrystal contact formation in the solution phase. The activation energy for surface nucleation is found to be 144 ± 30 kJ/mol, very similar to that for interface nucleation. Despite the comparable activation energy, interface nucleation dominates at higher temperatures due to increased nanocrystal interactions. The results of this work demonstrate enhanced control over polymorphic nanocrystal systems and contribute to further understanding of the kinetic processes at the nanoscale, including nucleation, crystallization, and biomineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.