Degenerately doped metal oxide nanocrystals have emerged as infrared plasmonic materials with promising applications in optoelectronics, surface-enhanced infrared spectroscopies, and sensing. They also have potential for technological applications in electronics and photonics owing to the possibility of coupling between plasmon and exciton in the absence of a heterojunction. Here, we demonstrate the control of excitonic splitting in In 2 O 3 nanocrystals upon excitation with circularly polarized light in an external magnetic field by simultaneous control of the electronic structure of donor defects and the nanocrystal host lattice. Using variable-temperature− variable-field magnetic circular dichroism spectroscopy, we show that the nanocrystal band splitting has two distinct contributions in plasmonic In 2 O 3 nanocrystals. Temperature-independent splitting arises from the cyclotron magnetoplasmonic modes, which impart angular momentum to the conduction band excited states near the Fermi level, and increases with the intensity of the corresponding plasmon resonance. Temperature-dependent splitting is associated with the localized electron spins trapped in defect states. The ratio of the two components can be controlled by the formation of oxygen vacancies or introduction of aliovalent dopants. Using these experimental results in conjunction with the density functional theory modeling, relative contribution of the two mechanisms is discussed in the context of the perturbation theory taking into account energy separation between the nanocrystal excited states and the localized defect states. The results of this work demonstrate the ability to control carrier polarization in nonmagnetic metal oxide nanocrystals using both individual and collective electronic properties and allow for their application as an emerging class of multifunctional materials with strongly interacting degrees of freedom.
Investigation of the origin of high-Curie temperature ferromagnetism in diluted magnetic oxides has become one of the focal points of research on solid-state magnetism. While several possible mechanisms have been proposed theoretically, broader experimental evidence is still lacking. Here we report a comparative study of the electronic structure and magnetic properties of colloidal Fe-doped In2O3 and SnO2 nanocrystals, as building blocks for grain-boundary-rich diluted magnetic oxide films. The dopant ions in both nanocrystal host lattices are principally in 3+ oxidation state, with possibly a minor presence of Fe2+ in In2O3, and no conclusive evidence of the presence of Fe2+ in SnO2 nanocrystals. Subsequently, we found that Fe-doped In2O3 nanocrystalline films exhibit only minor ferromagnetic ordering (with a magnetic moment of less than ca. 0.1 μB/Fe) and decreasing saturation magnetization with increasing doping concentration at room temperature. The saturation magnetic moment of Fe-doped SnO2 nanocrystalline films is insignificant or below the detection limit. These results contrast previous findings for analogous Mn-doped nanocrystals, which contain mixed oxidation states (Mn2+ and Mn3+) and exhibit a robust ferromagnetism at room temperature. The correlation between the mixed dopant oxidation states and the observed magnetic properties implies that ferromagnetism in these systems is of a Stoner type, enabled by electron transfer between dopant ions and the local defect states arising from the grain boundaries within a nanocrystalline film. These results suggest the prospect of probing and manipulating ferromagnetism in nonmagnetic oxides by simultaneous control of the transition metal dopant oxidation states and extended structural defects.
Dynamic manipulation of discrete states in nanostructured materials is critical for emerging quantum technologies. However, this process often requires a correlation of mutually competing degrees of freedom. Here we report the control of magnetic-field-induced excitonic splitting in colloidal TiO2 nanocrystals by control of their faceting. By changing nanocrystal morphology via reaction conditions, we control the concentration and location of oxygen vacancies, which can generate localized surface plasmon resonance and foster the reduction of lattice cations leading to the emergence of individual or exchange-coupled Ti(III) centers with high net-spin states. These species can all couple with the nanocrystal lattice under different conditions resulting in distinctly patterned excitonic Zeeman splitting and selective control of conduction band states in an external magnetic field. This work demonstrates the concept of using nanocrystal morphology to control carrier polarization in individual nanocrystals using both intrinsic and collective electronic properties, representing a unique approach to multifunctionality in reduced dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.