Neuroplasticity following sensory deprivation has long inspired neuroscience research in the quest of understanding how sensory experience and genetics interact in developing the brain functional and structural architecture. Many studies have shown that sensory deprivation can lead to cross-modal functional recruitment of sensory deprived cortices. Little is known however about how structural reorganization may support these functional changes. In this study, we examined early deaf, hearing signer and hearing non-signer individuals using diffusion MRI to evaluate the potential structural connectivity linked to the functional recruitment of the temporal voice area by face stimuli in deaf individuals. More specifically, we characterized the structural connectivity between occipital, fusiform and temporal regions typically supporting voice- and face-selective processing. Despite the extensive functional reorganization for face processing in the temporal cortex of the deaf, macroscopic properties of these connections did not differ across groups. However, both occipito- and fusiform-temporal connections showed significant microstructural changes between groups (fractional anisotropy reduction, radial diffusivity increase). We propose that the reorganization of temporal regions after early auditory deprivation builds on intrinsic and mainly preserved anatomical connectivity between functionally specific temporal and occipital regions.
Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress.
The study of patients after glioma resection offers a unique opportunity to investigate brain reorganization. It is currently unknown how the whole-brain connectomic profile evolves longitudinally after surgical resection of a glioma and how this may be associated with tumor characteristics and cognitive outcome. In this longitudinal study, we investigate the impact of tumor lateralization and grade on functional connectivity (FC) in highly connected networks, or hubs, and cognitive performance. Twenty-eight patients (17 high-grade, 11 low-grade gliomas) underwent longitudinal pre/post-surgery resting-state fMRI scans and neuropsychological assessments (73 total measures). FC matrices were constructed considering as functional hubs the default mode (DMN) and fronto-parietal networks. No-hubs included primary sensory functional networks and any other no-hubs nodes. Both tumor hemisphere and grade affected brain reorganization post-resection. In right-hemisphere tumor patients, regardless of grade and relative to left-hemisphere gliomas, FC increased longitudinally after the intervention, both in terms of FC within hubs (phubs = 0.0004) and FC between hubs and no-hubs (phubs-no-hubs = 0.005). Regardless of tumor side, only lower-grade gliomas showed longitudinal FC increases relative to high-grade tumors within a precise hub network, the DMN. The neurocognitive profile was longitudinally associated with spatial features of the connectome, mainly within the DMN. We provide evidence that clinical glioma features, such as lateralization and grade, affect post-surgical longitudinal functional reorganization and cognitive recovery. The data suggest a possible role of the DMN in supporting cognition, providing useful information for prognostic prediction and surgical planning.
Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open and inclusive environment. Departing from the formats of typical scientific workshops, these events are based on grassroots projects and training, and foster open and reproducible scientific practices. We describe here the multifaceted, lasting benefits of Brainhacks for individual participants, particularly early career researchers. We further highlight the unique contributions that Brainhacks can make to the research community, contributing to scientific progress by complementing opportunities available in conventional formats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.