The delivery of gold nanoparticles (AuNPs) to specific cells strongly depends on the properties e.g. the size of the particles and is of great interest for a large variety of biomedical applications. Here we investigated the size dependence of the receptor-ligand mediated AuNP delivery to cells by comparing very small "molecular" Au-clusters of only 2 nm to larger 7 nm and 36 nm AuNPs with a distinct surface plasmon resonance. Since the molecular weight in this range changes by almost three orders of magnitude, we show how the amount of gold relates to the number of delivered AuNPs. We attached small interleukin-6 receptor (IL-6R) specific aptamer molecules (AIR-3A) in different amounts to the particles and investigated the specificity of the delivery to IL-6R-carrying cells. To reduce unspecific interaction the particles were additionally covered with polyethylene glycol (PEG). Besides particle size and concentration we varied additional parameters such as aptamer surface coverage as well as incubation time and temperature. We found that in particular, small particles with diameters of less than 2 nm show an up to six times higher delivery rate for the aptamer-conjugated AuNPs compared to untargeted PEG-coated AuNPs. The specificity reduces with a decreasing aptamer/PEG ratio, and also with an increase in particle size where the unspecific uptake is much higher. In addition we also compared the delivery efficiency of this aptamer-mediated delivery system with an antibody-mediated system targeting the same receptor to validate the performance of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.